МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.04 Эксплуатация железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическое моделирование на транспорте

Специальность: 23.05.04 Эксплуатация железных дорог

Специализация: Грузовая и коммерческая работа

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 17.04.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины является изучение принципов математического компьютерного моделирования, постановки вычислительного эксперимента, методов обработки статистических данных, фундаментальных и современных математических методов моделирования, а также освоение применения компьютерного моделирования функционала подразделений деятельности ж/д транспорта и крупных промышленных предприятий.

Задачей дисциплины является формирование у обучающихся навыков проведения компьютерных экспериментов, а также навыков пользования прикладными программными продуктами для моделирования.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- применять методы математического анализа и моделирования в практических задачах

Знать:

- основные понятия численных методов, методы работы с функциями распределения случайных величин из теории математики для отраслевых задач вероятностей, критерии и методы обработки данных из математической статистики

Владеть:

- методами математического описания физических явлений и процессов, определяющих принципы работы различных технических систем на железнодорожном транспорте
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
	Всего	Семестр	
	Всего	№ 4	№ 5
Контактная работа при проведении учебных занятий (всего):	96	32	64
В том числе:			
Занятия лекционного типа	48	16	32
Занятия семинарского типа	48	16	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 84 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Введение	
	Рассматриваемые вопросы:	
	-вычислительный эксперимент в математическом моделировании:	
	- основные типы математических моделей;	
	- принципы построения математических моделей;	
	- этапы математического моделирования;	
	- типовые задачи на транспорте в курсе математического моделирования.	

№					
п/п	Тематика лекционных занятий / краткое содержание				
2	Линейные модели, приводящие к решению систем линейных алгебраических				
	уравнений (СЛАУ)				
	Рассматриваемые вопросы:				
	равновесное распределение потоков по маршрутам линейноой транспортной сети как решение				
	СЛАУ				
	- прямые и итерационные методы решения СЛАУ при моделировании отраслевых задач				
	-вычисление определителя матрицы путем разложения по строкам и столбцам.				
	- классификация матриц специального вида и операции над ними				
	-метод обратной матрицы и правило Крамера.				
3	Решение СЛАУ с квадратной матрицей методом Гаусса				
	Рассматриваемые вопросы:				
	- элементарные преобразования строк матрицы СЛАУ				
	-эквивалентные матрицы и равносильные системы уравнений				
	- расширенная матрица, ранг матрицы и совместность систем				
	- прямой и обратный ход				
	- решение СЛАУ методом Гаусса в Mathcad				
4	Задача принятия решений (ЗПР) в условиях неопределённости				
	Рассматриваемые вопросы:				
	- модели ЗПР при управлении перевозочным процессом;				
	- решение СЛАУ с прямоугольной матрицей, когда число уравнений меньше числа неизвестных;				
	- решения СЛАУ, зависящие от параметра задаваемого Лицом Принимающим Решение (ЛПР).				
5	Решение нелинейных алгебраических уравнений в задачах с полиномиальными				
	моделями				
	Рассматриваемые вопросы:				
	-этап отделения корней численным и графическим методами				
	-метод дихотомии, итерационные методы касательных (Ньютона) и секущих уточнения корней				
6	-нахождение решения в Mathcad				
6	Задача на собственные значения и собственные вектора матриц				
	Рассматриваемые вопросы:				
	-применение задачи в проблематике предельного объема информации по каналу связи, собственных частот подвижного состава и мостовых конструкций				
	-нахождение характеристического уравнения и его решение, спектр и спектральный радиус				
	матрицы				
	-решение однородных СЛАУ для нахождения собственных векторов				
	-функции eigenvalues и eigenvectors в Mathcad				
7	Модель Леонтьева межотраслевого баланса				
	Рассматриваемые вопросы:				
	-исследование линейной модели и нахождения решения задачи планирования с использованием				
	матричных методов решения систем уравнений.				
8	Аппрокимация функций, интерполяция многочленом Лагранжа				
	Рассматриваемые вопросы:				
	-классификаця и применение методов аппроксимации функций в отраслевых задачах				
	-аппроксимация заданных в небольшом количестве точек сеточных (табличных) функций искомой				
	непрерывной функцией в виде одного алгебраического многочлена не выше 5-й степени.				
9	Сплайн-интерполяция				
	Рассматриваемые вопросы:				
	- разновидности функций распределения случайных величин (Пуассона-, Вейбула-, Гамма-				
	распределения), дискретные и непрерывные распределения;				
	- задача замены сложновычисляемых трансцендентных функций простыми многочленами;				
	- аппроксимация заданных в большом количестве точек-узлов сеточных функций искомыми				

$N_{\underline{0}}$	
п/п	Тематика лекционных занятий / краткое содержание
	непрерывными функциями в виде системы алгебраических многочленов 1-й или 2-й или 3-й степени для каждой пары соседних узлов.
10	Аппрокимация функций методом наименьших квадратов Рассматриваемые вопросы:.
	- статистическая обработка результатов измерений временных перемещений поездов и построение приближающей функции методом наименьших квадратов (МНК);
	- анализ качества приближения с помощью критерия Пирсона;
-сравнительный анализ разных методов аппроксимации функций.	
11	Экстраполяция функций в логистике Рассматриваемые вопросы:
	гассматриваемые вопросы экстраполяция исходных функций, полученных МНК при обработки времени прохождения
	поездом промежуточных станций и её использование для прогнозирования времени прибытия
	поезда на конечную станцию
12	Математические модели на базе дифференциальных задач
	Рассматриваемые вопросы:
	-классификация дифференциальных задач для обыкновенных дифференциаальных уравений (ОДУ) - примеры математических моделей отраслевых задач на базе начально-краевых задач для
	дифференциальных уравнений -аналитические и численные методы решения дифференциальных задач
13	Метод конечных разностей для аппроксимации дифференциальных задач
13	метод конечных разностси для анпроксимации дифференциальных задач Рассматриваемые вопросы:
	- понятие разностной сетки и сеточной функции, знакомство с разреженными матрицами
	специального вида, конечно-разностные анаоги 1-й и 2-й производных;
	- сведение начальных (для ОДУ 1-ого и 2-ого порядка) и краевых задач (для ОДУ 2-ого порядка) к
	решению СЛАУ, составление матриц СЛАУ;
	-разностная схема Эйлера и Эйлера с пересчетом для ОДУ 1-ого порядка для численного решения задачи Коши для ОДУ 1-ого и 2-ого порядка в программной среде MathCad, Smath Studio.
14	Численное решение первой краевой задачи для ОДУ
	Рассматриваемые вопросы:
	-решения линейного дифференциального уравнения второго порядка с постоянными
	коффициентами с краевыми условиями 1-го рода сведением задачи методом конечных разностей к СЛАУ;
	- решение СЛАУ методоми простой итерации и Зейделя;
	- решение задачи в программной среде Smath Studio, включая встроенные функции ПО.
15	Случайные процессы и иммитационное моделирование
	Рассматриваемые вопросы:
	-случайные процессы на транспорте;
	-иммитационное моделирование, как статистическое моделирование при его многократном воспроизведении с последующей статистической обработкой;
	-метод Монте-Карло, Монте-Карло симуляция;
	-гравитационная модель в задачах железнодорожных перевозок.
1.0	n
16	Задачи оптимизации
	Рассматриваемые вопросы:
	-постановка задачи нахождение условного экстремума;
	-сведение исходной задачи к отысканию безусловного экстремума функции множителей Лагранжа; -иммитационное моделирование в задаче определения оптимальной этапности наращивания
	-иммитационное моделирование в задаче определения оптимальной этапности наращивания провозной способности ж-д станций.

№ п/п	Тематика лекционных занятий / краткое содержание
17	Транспортная задача — постановка и определения Рассматриваемые вопросы: - общая постановка транспортной задачи; - транспортная задача в матричной постановке, замкнутая и открытая задачи; - симплекс-метод решения ЗЛП в программных средах Exel, MathCad, Smath Studio.
18	Задача динамического программирования (ДП), методы решения Рассматриваемые вопросы: - постановка задачи; - принцип оптимальности и уравнения Беллмана, геометрическая интерпретация задачи; - графический способ решения; -примеры применения методов ДП в управлении эксплуатационной работой; -задача о замене оборудования.
19	Задача коммивояжёра и нейронные сети Рассматриваемые вопросы: - общая постановка задачи; - приближённые и точные методы решения задачи коммивояжёра; - алгоритм решения задачи коммивояжера с использованием рекуррентной нейронной сети; - понятие об архитектуре нейронной сети на примерах задач сортировки вагонов и распознавания символов маркировки вагонов с помощью нейронной сети .
20	Системы массового обслуживания (СМО) Рассматриваемые вопросы: - аналиические и иммитационные методы моделирования СМО; - построение фрагментарных моделей технологических линий железнодорожных станций; - иммитационное моделирование при расчёте характеристик СМО на примере этапного развития ж- д транспорта.

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Функции работы с матрицами в программной среде Excel		
	В результате выполнения лабораторной работы обучающиеся приобретают навык операций с		
	матрицами, моделирования линейных систем, , вычисления опредителя и др. числовых		
	характеристик матриц в программной среде Excel		
2	Решение СЛАУ прямыми методами в Excel		
	В результате выполнения лабораторной работы обучающиеся приобретают навык нахождения		
	приближённого решения СЛАУ в программной среде Excel Методом Крамера и методом обратной		
	матрицы.		
3	Решение СЛАУ в Excel как задачи оптимизации		
	В результате выполнения лабораторной работы обучающиеся приобретают понимание задачи		
	оптимизации и навык нахождения приближённого решения СЛАУ с помощью надстройки «поиск		
	решения».		
4	Основные функции в программной среде Smath Studio		
	В результате выполнения лабораторной работы обучающиеся приобретают навык выполнения		

No		
п/п	Наименование лабораторных работ / краткое содержание	
	операций с матрицами, моделирования линейных систем, вычисления числовых характеристик	
	матриц в программной среде Smath Studio и построения графиков.	
5	Решение СЛАУ прямыми методами в программной среде Smath Studio	
	В результате выполнения лабораторной работы обучающиеся приобретают навык нахождения	
	приближённого решения СЛАУ в программной среде Smath Studio, а также понимания	
	преймуществ и недостатков разных прямых методов решения и программных сред.	
6		
	В результате выполнения лабораторной работы обучающиеся приобретают навык исследования	
	существования решений СЛАУ с использованием понятия ранг матрицы, элементарных	
	преобразований строк матриц, нахождения приближённого решения СЛАУ в программной среде	
	Smath Studio, включая встроенные функции root для решения нелинейных уравнений.	
7	Метод Гаусса решения СЛАУ с прямоугольной матрицей	
	В результате выполнения лабораторной работы обучающиеся приобретают навык анализа задачи на	
	предмет совместности СЛАУ (используя ранги матрицы и расширенной матрицы) и принятия	
	решений в условиях неопределённости, когда число уравнений СЛАУ меньше числа неизвестных-	
	решение, зависящее от параметра, (числовое значение которого задается).	
8	Модель Леонтьева межотраслевого баланса	
	В результате выполнения лабораторной работы обучающиеся приобретают навык исследования	
	линейной модели и нахождения решения задачи планирования с использованием матричных	
0	методов в программной среде Smath Studio.	
9	1 '	
	В результате выполнения лабораторной работы обучающиеся приобретают навык обработки	
10	результатов измерений и нахождения приближения функции в виде многочлена.	
10	Сплайн-интерполяция	
В результате выполнения лабораторной работы обучающиеся приобретают навык обработки		
	результатов измерений и нахождения приближенных функциональных зависимостей для случайных процессов.	
11	Сравнение разных методов интерполяции	
11	В результате выполнения лабораторной работы обучающиеся приобретают навык исследования	
	моделей разного типа и выбора соответствующего метода решения задачи.	
12	Аппрокимация методом наименьших квадратов	
12	В результате выполнения лабораторной работы обучающиеся приобретают навык статистической	
	обработки результатов измерений и построения приближенной функции методом наименьших	
	квадратов (МНК), анализа степени приближения с помощью критерия Пирсона.	
13	Экстраполяция функций в логистике	
	В результате выполнения лабораторной работы обучающиеся приобретают навык экстраполяции	
	исходных функций, полученных МНК при обработки времени прохождения поездом	
	промежуточных станций и её использование для прогнозирования времени прибытия поезда на	
	конечную станцию.	
14	Решение задачи Коши	
	В результате выполнения лабораторной работы обучающиеся приобретают навык приближенного	
	решения линейного дифференциального уравнения первого порядка с постоянными	
	коффициентами с начальным условием в программной среде Smath Studio	
15	Решение первой краевой задачи	
	В результате выполнения лабораторной работы обучающиеся приобретают навык приближенного	
	решения линейного дифференциального уравнения второго порядка с постоянными	
	коффициентами с краевыми условиями сведением дифференциальной задачи методом конечных	
	разностей к СЛАУ, решаемого методом простой итерации и Зейделя в программной среде Smath	
	Studio, включая встроенные функции ПО.	

№	II		
п/п	Наименование лабораторных работ / краткое содержание		
16	Задача динамического программирования		
	В результате выполнения лабораторной работы обучающиеся приобретают навык решения задач		
	динамического программирования по методу на основе принципа оптимальности Беллмана.		
17	Решение ОЗЛП		
	В результате выполнения лабораторной работы обучающиеся приобретают навык решения		
	оптимизационных задач в надстройке «поиск решения» в Excel и графической интерпретации		
	решения.		
18	Определение кратчаи?ших расстоянии? между вершинами транспортной сети		
	В результате выполнения лабораторной работы обучающиеся знакомятся с реализацией алгоритма		
	Дейкстры в Excel, приобретают навык работы с сетями.		
19	Транспортная задача		
	В результате выполнения лабораторной работы обучающиеся приобретают навык нахождения		
	опорного решения транспортной задачи методом северо-западного угла, учится решать		
	транспортную задачу в надстройке «поиск решения» в Excel.		
20	Задача коммивояжёра и нейронные сети		
	В результате выполнения лабораторной работы обучающиеся приобретают навык решения задачи		
	коммивояжёра в среде Excel с использованием элементов нейронной сети.		

4.3. Самостоятельная работа обучающихся.

_	<u> </u>			
	№ п/п	Вид самостоятельной работы		
		Работа с лекционным материалом.		
		Работа с учебной литературой.		
	3	Текущая подготовка к занятиям.		
	4	Подготовка к промежуточной аттестации.		
	5	Подготовка к текущему контролю.		

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Горев, А. Э. Теория транспортных процессов и систем: учебник для среднего профессионального образования / А. Э. Горев. — 3-е изд., испр. и доп. — Москва: Издательство Юрайт, 2025. — 193 с. — (Профессиональное образование). — ISBN 978-5-534-13578-7.	URL: https://urait.ru/bcode/562014 (дата обращения: 07.11.2025).
2	Гужин, И. Н. Моделирование транспортных процессов: методические указания / И. Н. Гужин. — Самара: СамГАУ, 2024. — 26 с. — Текст: электронный // Лань: электронно-библиотечная система.	https://e.lanbook.com/book/421802 (дата обращения: 13.11.2025)

3	Ланских, Ю. В. Киберфизические системы: учебное пособие / Ю. В. Ланских, В. Г. Ланских. — Киров: ВятГУ, 2022. — 196 с. — Текст: электронный // Лань: электронно-библиотечная	https://e.lanbook.com/book/408545 (дата обращения: 13.11.2025).
	система	
4	Кудрявцев, В. Б. Теория автоматов : учебник для	URL: https://urait.ru/bcode/569495
	вузов / В. Б. Кудрявцев, Э. Э. Гасанов, А. С.	(дата обращения: 07.11.2025).
	Подколзин. — 2-е изд. — Москва : Издательство	
	Юрайт, 2025. — 199 с. — (Высшее образование).	
	— ISBN 978-5-534-15339-2.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru).
 - Образовательная платформа «Юрайт» (https://urait.ru/).
- Электронно-библиотечная система издательства «Лань» (https://e.lanbook.com/).
 - Поисковые системы: http://www.google.ru/; http://www.yandex.ru.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Microsoft Edge (или другой браузер).
 - Операционная система Microsoft Windows.
 - Microsoft Office.
- Программная среда Smath Studio (Облачная версия: https://smath.com/ru-RU/cloud)
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лекционная аудитория, оснащённая компьютерной техникой и наборами демонстрационного оборудования.

Аудитория для проведения лабораторных работ, оснащенная персональными компьютерами.

9. Форма промежуточной аттестации:

Зачет в 4, 5 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами» старший преподаватель кафедры

В.А. Горяйнов

«Цифровые технологии управления транспортными процессами»

В.А. Пестин

Согласовано:

и.о. заведующего кафедрой ЛТСТ

А.С. Синицына

Заведующий кафедрой ЦТУТП

В.Е. Нутович

Председатель учебно-методической

Н.А. Андриянова комиссии