МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИТТСУ

П.Ф. Бестемьянов

20 ноября 2019 г.

Кафедра «Электроэнергетика транспорта»

Автор Андреев Валерий Васильевич, к.т.н., доцент

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Математическое моделирование систем и процессов»

Специальность: 23.05.05 – Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

С.В. Володин

Квалификация выпускника: Инженер путей сообщения

Форма обучения: очная

Год начала подготовки 2016

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 1

06 сентября 2017 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 2 04 сентября 2017 г. Заведующий кафедрой

Magenys

М.П. Бадёр

1. Цели освоения учебной дисциплины

Целью освоения дисциплины «Математическое моделирование систем и процессов» является формирование у студентов необходимых знаний и умений для компьютерного моделирования различных режимов работы систем тягового электроснабжения, определения соответствия параметров системы реализуемым нагрузкам, с непрерывным использованием универсальных средств разработки приложений и профессиональных систем компьютерной математики. Основной целью изучения учебной дисциплины «Математическое моделирование систем и процессов» является формирование у обучающегося компетенций в области теории электрификации железных дорог для следующих видов деятельности: проектной;

эксплуатационной;

научно-исследовательской.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности): проектной:

- проектирование систем тягового электроснабжения постоянного тока 3,3кВ;
- проектирование систем тягового электроснабжения переменного тока 25кB и 2х25кB. эксплуатационной:

проектирование систем усиления тягового электроснабжения:

- при росте грузопотока;
- при организации движения тяжеловесных поездов;
- при повышении скоростей движения грузовых и пассажирских поездов. научно-исследовательской:
- исследование новых систем тягового электроснабжения повышенного напряжения;
- расчёт параметров системы тягового электроснабжения при внедрении новых видов электроподвижного состава с асинхронными тяговыми двигателями;
- оценка эффективности рекуперации электрической энергии;
- оценка влияния тяговый сети на линии сигнализации и связи.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Математическое моделирование систем и процессов" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-1	способностью применять методы математического анализа и
	моделирования, теоретического и экспериментального исследования
ОПК-4	способностью понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и
	угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том числе защиты государственной
	тайны и коммерческих интересов
ПК-15	способностью применять современные научные методы исследования
	технических систем и технологических процессов, анализировать,
	интерпретировать и моделировать на основе существующих научных
	концепций отдельные явления и процессы с формулировкой
	аргументированных умозаключений и выводов

ПК-16	способностью проводить научные исследования и эксперименты,
	анализировать, интерпретировать и моделировать в областях
	проектирования и ремонта систем обеспечения движения поездов

4. Общая трудоемкость дисциплины составляет

5 зачетных единиц (180 ак. ч.).

5. Образовательные технологии

Преподавание дисциплины «Математическое моделирование систем и процессов» осуществляется в форме лекций и лабораторных занятий. Лекции проводятся в традиционной организационной форме с элементами проблемного обучения. Две темы дисциплины проводятся по законам проблемного обучения. Постановка проблем осуществляется на лекциях, а их решение реализуется в виртуальной лаборатории. Лисциплина «Математическое моделирование систем и процессов» в новом учебном плане является заключительной в модуле дисциплин, в котором органически вписались дисциплины: «Информатика» (1 курс – I и II семестры), «Теория линейных электрических цепей» (2 и 3 курс – IV и V семестры), «Основы компьютерного проектирования и моделирования устройств электроснабжения» (3 курс – VI семестр) и, наконец, «Математическое моделирование систем и процессов» (4 курс – VII и VIII семестры).Особо следует отметить, что лекции, лабораторные работы и курсовые проекты всех перечисленных дисциплины модуля, полностью ориентированы на использование современных компьютерных технологий и, соответствующих им приёмов и методов исследований. Все перечисленные дисциплины модуля базируются на современных технологиях программирования с использованием универсальных средств разработки приложений (типа Delphi) и профессиональных систем компьютерной математики (типа MathCad и MatLab/Simulink). Учебный материал всех дисциплин модуля логически наследуется от семестра к семестру и от курса к курсу и базируется, что естественно, на материале специальности «Электроснабжение железных дорог». Количество используемых сведений из дисциплин специальности существенно нарастает по мере продвижения по этапам учебного плана. При выполнении лабораторных работ, курсовых проектов и в процессе самостоятельной работы студентов, в рамках указанного выше модуля дисциплин, в последние годы широко практикуется взаимодействие со студентами в режиме онлайн. Эта форма доказывает свою эффективность, поскольку позволяет студенту, при возникновении каких-либо затруднений, быстро представить преподавателю свою работу и получить от него подсказку или рекомендацию. Следует подчеркнуть особую актуальность такой технологии в современных условиях, когда многие студенты совмещают учёбу с работой на предприятиях транспорта. В свою очередь к преподавателю непрерывно поступает информация о состоянии дел по выполнению учебных заданий от каждого студента. Это существенно облегчает преподавателю проводить промежуточный контроль знаний студента (промежуточную аттестацию)...

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Моделирование как этап в исследовании явлений и процессов.

РАЗДЕЛ 2

Принципы построения структурно-функциональной схемы математической модели.

РАЗДЕЛ 3

Моделирование тяговой подстанции постоянного тока. Проведение гармонического анализа выпрямленного напряжения тяговой подстанции;

РАЗДЕЛ 4

Исследование влияния сглаживающего устройства (СУ) на гармонический состав выпрямленного напряжения тяговой подстанции;

РАЗДЕЛ 5

Моделирование быстродействующих фидерных выключателей тяговой подстанции. Исследование процесса отключения тока короткого замыкания в тяговой сети;

РАЗДЕЛ 6

Моделирование диодного разрядного устройства (ДРУ) тяговой подстанции. Исследование влияния ДРУ на процесс отключения тока короткого замыкания в тяговой сети;

РАЗДЕЛ 7

Моделирование диодного разрядного устройства (УР-2) тяговой подстанции. Исследование влияния УР-2 на процесс отключения тока короткого замыкания в тяговой сети;

РАЗДЕЛ 8

Моделирование грузового электровоза ВЛ10у. Исследование процесса кратковременной генерации тока электровоза при коротком замыкания в тяговой сети вблизи ЭПС;

РАЗДЕЛ 9

Моделирование системы электрической тяги 3,3кВ. Исследование работы электрифицированной железной дороги в нормальном и аварийном режимах.

РАЗДЕЛ 10

Моделирование тяговой подстанции переменного тока. Исследование распределения токов нагрузки по фазам тягового трансформатора.

РАЗДЕЛ 11

Моделирование тягового трансформатора, выпрямительной установки и сглаживающего устройства грузового электровоза ВЛ80с.

РАЗДЕЛ 12

Моделирование тягового двигателя пульсирующего тока НБ-418К6 электровоза ВЛ80с. Исследование генераторного тока тяговых двигателей электровоза при коротком замыкании на выпрямительной установке.

РАЗДЕЛ 13

Моделирование системы электрической тяги переменного тока 25кВ. Исследование работы электрифицированной железной дороги переменного тока в нормальном и аварийном режимах.

РАЗДЕЛ 14

Имитационное моделирование системы электрической тяги постоянного тока 3,3кВ.

РАЗДЕЛ 15

Имитационное моделирование системы электрической тяги переменного тока 25кВ.

экзамен