МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическое моделирование систем и процессов

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 27.04.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Математическое моделирование» являются:

- изучить принципы и методы математического моделирования;
- изучить методы разработки и решения математических моделей реальных объектов и процессов с использованием современных средств вычислительной техники и стандартных пакетов прикладных программ.

Задачами освоения учебной дисциплины «Математическое моделирование» являются:

- освоение основных подходов к построению и анализу математических моделей, общих для различных областей знания, не зависящих от конкретной специфики;
 - освоение различных типов математических моделей и их свойств;
- освоение принципов и методов разработки различных математических моделей;
- освоение математических методов: аналитических (точных) и численных (приближённых) для решения инженерных задач с помощью математических моделей;
- освоение практических навыков разработки адекватных математических моделей железнодорожной направленности, а также их алгоритмизации и программирования;
- освоение анализа результатов, полученных в процессе вычислительного эксперимента.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Технические и программные средства реализации информационных технологий, программное обеспечение и технологии программирования,применять типовые программные средства Microsoft

Office; разрабатывать сложные математические модели, определять цель математического эксперимента

Уметь:

Владеть основными методами работы на персональных компьютерах с прикладными программными средствами, компьютером как средством решения сложных математических моделей, основными методами работы на персональном компьютере с прикладными программными средствами

Владеть:

,основы теории математического моделирования, технические и программные средства реализации математических моделей, современные языки программирования, программное обеспечение и технологии программирования.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№5	№6	
Контактная работа при проведении учебных занятий (всего):	80	32	48	
В том числе:				
Занятия лекционного типа	32	16	16	
Занятия семинарского типа	48	16	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме

контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No			
п/п	Тематика лекционных занятий / краткое содержание		
1	Общие сведения о моделировании и моделях.		
	Рассматриваемые вопросы:		
	- понятие о моделировании;		
	- геометрическое, физическое, математическое моделирование;		
	- понятия математического моделирования и математической модели.		
2	Уровни математического моделирования.		
	Рассматриваемые вопросы:		
	- микро-, макро- и метауровни математического моделирования;		
	- примеры использования и области применения.		
3	Процесс разработки математической модели.		
	Рассматриваемые вопросы:		
	- основные вопросы решаемые при разработке математической модели;		
	- процесс моделирования;		
	- оценка полученных результатов;		
	- корректировка моделей.		
4	Разработка математической модели в процессе проектирования объекта.		
	Рассматриваемые вопросы:		
	- процесс моделирования вновь создаваемого объекта;		
	- последовательность математического моделирования;		
	- схема изучения свойств модели.		
5	Математическое моделирование тяговых электрических машин.		
	Рассматриваемые вопросы:		
	- математическое моделирование асинхронных электродвигателей.		
6	Математическое моделирование тяговых электрических машин.		
	Рассматриваемые вопросы:		
	- математическое моделирование электрических двигателей последовательного возбуждения.		
7	Методы, основанные на представлении решения в виде рядов Тейлора.		
	Рассматриваемые вопросы:		
	- основные преимущества и недостатки методов основанных на представлении решения в виде рядов		
	Тейлора.		
8	Метод Эйлера для численного решения дифференциальных уравнений.		
	Рассматриваемые вопросы:		
	- взаимосвязь метода Эйлера для численного решения дифференциальных уравнений рядом Тейлора;		
	- графическое представление метода Эйлера.		
9	Метод Рунге-Кутта четвёртого порядка.		
	Рассматриваемые вопросы:		
	- основные формулы метода;		
	- графическое представление;		

№ п/п	Тематика лекционных занятий / краткое содержание		
	- преимущества и недостатки.		
10	Модифицированный метод Эйлера.		
	Рассматриваемые вопросы:		
	- преимущества и недостатки модифицированнго метода Эйлера;		
	- основные отличия от метода Эйлера для численного решения дифференциальных уравнений.		
11	САПР в машиностроении.		
	Рассматриваемые вопросы:		
	- типы систем автоматизированного проектирования.		
12	История развития САПР.		
	Рассматриваемые вопросы:		
	- создание САПР;		
	- развитие САПР от САD до САЕ систем.		
13	Уровни программного обеспечения.		
	Рассматрвиаемые вопросы:		
	- системы автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые		
	САПР.		
14	Системы автоматизированного проектирования (САПР)		
	Рассматриваемые вопросы:		
	- основные принципы работы в системах автоматизированного проектирования.		

4.2. Занятия семинарского типа.

Лабораторные работы

	oracobarobarobaro		
No	Наименование лабораторных работ / краткое содержание		
п/п	панменование заоораторных расот / краткое содержание		
1	Моделирование электрического прибора (на примере диода или тиристора)		
	Рассматриваемые вопросы:		
	- разработка модели электрической цепи переменного тока в		
	программном пакете Mathcad;		
	- разработка моделей тиристора и диода;		
	- анализ полученных данных.		
2	Модель электрического двигателя постоянного тока с последовательным		
	возбуждением.		
	Рассматриваемые вопросы:		
	- математическое описание двигателя постоянного тока;		
	- решение в программном пакете Mathcad дифференциальных уравнений описывающем работу		
	двигателя.		
3	Моделирование двухмассовой системы		
	Рассматриваемые вопросы:		
	- математическое описание механической двухмассовой системы;		
	- решение в Mathcad дифференциальных уравнений;		
	- анализ графиков вертикальных колебаний.		
4	Исследование точности при моделировании колебательного процесса.		
	Рассматриваемые вопросы:		
	- оценка количества точек приходящихся на оодин период для получения нужной точности решения		
5	Разработка твёрдотельной модели детали подвижного состава		
	Рассматриваемые вопросы:		
	- моделирование детали подвижного состава в программном пакете Soldworks.		

№ п/п	Наименование лабораторных работ / краткое содержание
6	Разработка модели узла механической части подвижного состава
	Рассматриваемые вопросы:
	- моделирование узла механической части в программном пакете Soldworks.
7	Разработка модели и расчёт напряжённо-деформированного состояния колёсно-
	редукторного блока электровоза
	Рассматриваемые вопросы:
	- моделирование детали или узла подвижного состава с проведением инженерного анализа в виде
	расчета напряженно-деформированного состояния.

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
п/п		
1	Изучение теоретического материала по математическому моделированию	
2	Изучение параметров и разработка математических моделей тяговых электрических машин	
3	Исследование точности решения дифференциальных уравнения различными численными методами	
4	Изучение программной среды. Построение моделей. Навыки работы с программными средами для построения и расчёта математической модели.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Введение в математическое моделирование : учебное пособие / В. Н. Ашихмин, М. Б. Гитман, И. Э. Келлер [и др.]; под. ред. П. В. Трусова Москва : Логос, 2020 440 с ISBN 978-5-98704-637-1 Текст : электронный.	https://znanium.com/catalog/product/1211604 (дата обращения: 27.04.2024)
2	Аверченков, В. И. Основы математического моделирования технических систем: учебное пособие / В. И. Аверченков, В. П. Федоров, М. Л. Хейфец. — 2-е изд. — Москва: ФЛИНТА, 2011. — 271 с. — ISBN 978-5-9765-1278-8. — Текст: электронный	Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/44652 (дата обращения: 27.10.2022)
3	Элементы теории математических моделей А.Д. Мышкис Однотомное издание Физматлит, ВО "Наука", 1994	НТБ (уч.2); НТБ (фб.); НТБ (чз.1); НТБ (чз.4)

4	Тарасик, В. П. Математическое	Лань: электронно-библиотечная система.
	моделирование технических систем:	— URL: https://e.lanbook.com/book/4324
	учебник / В. П. Тарасик. — Минск : Новое	(дата обращения: 27.10.2022).
	знание, 2013. — 584 с. — ISBN 978-985-	
	475-539-7. — Текст : электронны	
5	Долгачев, Н. И. Математическое	https://znanium.ru/catalog/product/1895284
	моделирование в среде MathCad. Ч. 3:	(дата обращения: 27.04.2024)
	учебно-методическое пособие / Н. И.	
	Долгачев Москва : РУТ (МИИТ), 2018	
	33 с Текст : электронный.	
6	Долгачев, Н. И. Математическое	URL:
	моделирование в среде MathCad. Ч. 4:	https://znanium.ru/catalog/product/1895285
	учебно-методическое пособие / Н. И.	(дата обращения: 27.04.2024)
	Долгачев Москва : РУТ (МИИТ), 2018	
	34 с Текст : электронный	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Федеральный портал «Российское образование» http://www.edu.ru/

Федеральный центр информационно-образовательных ресурсов (ФЦИОР) http://www.fcior.edu.ru

Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/

Поисковые системы: Yandex, Google, Yahoo!, Rambler.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

OC MS Windows XP или Vista, MS Office 2007, MS VBA, MathLab, MathCad

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Сетевой компьютерный класс, оснащенный персональными компьютерами на платформе IBM PC.

Канал связи с Интернетом со скоростью не менее 5 мбит/сек.

9. Форма промежуточной аттестации:

Зачет в 5, 6 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Электропоезда и локомотивы»

С.В. Володин

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин