МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Математическое моделирование систем и процессов

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 28.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Математическое моделирование систем и процессов» являются:

- изучение студентами принципов и методов математического моделирования;
- умение разработки и решение математических моделей реальных объектов и процессов с использованием современных средств вычислительной техники и стандартных пакетов прикладных программ.

Задачами освоения учебной дисциплины «Математическое моделирование систем и процессов» являются:

- освоение основных подходов к построению и анализу математических моделей, общих для различных областей знания, не зависящих от конкретной специфики;
 - освоение различных типов математических моделей и их свойств;
- освоение в области формирования представлений о принципах и методах разработки различных математических моделей;
- освоение математических методов: аналитических (точных) и численных (приближённых) для решения инженерных задач с помощью математических моделей;
- освоение практических навыков разработки адекватных математических моделей железнодорожной направленности, а также их алгоритмизации и программирования;
- освоение правильного анализа результатов, полученных в процессе вычислительного эксперимента.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-1 - Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Технические и программные средства реализации информационных технологий, программное обеспечение и технологии

программирования, применять типовые программные средства Microsoft Office; разрабатывать сложные математические модели, определять цель математического эксперимента

Уметь:

Уметь применять основные методы работы на персональных компьютерах с прикладными программными средствами, компьютером как средством решения сложных математических моделей.

Владеть:

Навыками применения основ теории математического моделирования, технических и программных средств реализации математических моделей, современных языков программирования

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
	Beero	№5	№6	
Контактная работа при проведении учебных занятий (всего):	96	48	48	
В том числе:				
Занятия лекционного типа	32	16	16	
Занятия семинарского типа	64	32	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 84 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или)

лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание			
Π/Π				
1	Общие сведения о моделировании и моделях.			
	Рассматриваемые вопросы:			
	- понятие о моделировании;			
	- геометрическое, физическое, математическое моделирование;			
	- понятия математического моделирования и математической модели.			
2	Уровни математического моделирования.			
	Рассматриваемые вопросы:			
	- микро-, макро- и метауровни математического моделирования;			
	- примеры использования и области применения.			
3	Процесс разработки математической модели.			
	Рассматриваемые вопросы:			
	- основные вопросы решаемые при разработке математической модели;			
	- процесс моделирования;			
	- оценка полученных результатов;			
	- корректировка моделей.			
4	Разработка математической модели в процессе проектирования объекта.			
	Рассматриваемые вопросы:			
	- основные вопросы решаемые при разработке математической модели;			
	- процесс моделирования;			
	- оценка полученных результатов;			
	- корректировка моделей.			
5	Математическое моделирование тяговых электрических машин.			
	Рассматриваемые вопросы:			
	- математическое моделирование асинхронных электродвигателей;			
	- математическое моделирование электрических двигателей последовательного возбуждения.			
6	Численные методы решения обыкновенных дифференциальных уравнений.			
	Рассматриваемые вопросы:			
	Рассматриваемые вопросы:			
	- основные преимущества и недостатки методов основанных на представлении решения в виде рядов			
7	Тейлора.			
7	Метод Эйлера для численного решения дифференциальных уравнений.			
	Рассматриваемые вопросы:			
	- взаимосвязь метода Эйлера для численного решения дифференциальных уравнений рядом Тейлора;			
-	- графическое представление метода Эйлера.			
8	Метод Рунге-Кутта четвёртого порядка. Модифицированный метод Эйлера.			
	Рассматриваемые вопросы:			
	- основные формулы метода Рунге-Кутта;			
	- графическое представление метода Рунге-Кутта;			
	- преимущества и недостатки метода Рунге-Кутта;			
	- преимущества и недостатки модифицированнго метода Эйлера;			

No	Томотичес наминации и запатий / ипатиса со написациа				
Π/Π	Тематика лекционных занятий / краткое содержание				
9	САПР в машиностроении.				
	Рассматриваемые вопросы:				
	- типы систем автоматизированного проектирования.				
10	История развития САПР. Создание САПР. Развитие САПР от САD до САЕ систем				
	Рассматриваемые вопросы:				
	- создание САПР;				
	- развитие САПР от САD до САЕ систем				
11	Уровни программного обеспечения				
	Рассматриваемые вопросы:				
	- системы автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые				
	CATIP.				
12	Системы автоматизированного проектирования (САПР).				
	Рассматриваемые вопросы:				
1.0	- основные принципы работы в системах автоматизированного проектирования.				
13	Основные принципы работы с САПР.				
	Рассматрвиаемые вопросы:				
	Рассматриваемые вопросы:				
	- понятия объектов проектирования;				
1.4	- принципы и подходы к формированию модели объекта.				
14	Создание твёрдотельных моделей обектов.				
	Рассматриваемые вопросы:				
	- понятие эскизной проработки модели; - простые детали, операции вытягивания, вычитания;				
	- простые детали, операции вытягивания, вычитания, - детали полученные на основании зеркального отображения;				
	- детали врашения.				
15	Создание твёрдотельных моделей узлов				
	Рассматриваемые вопросы:				
	- понятие сборки;				
	- основные требования к формированию сборок на основании сопряжения деталей;				
	- вды и типы сопряжений в сборках.				
16	Основы инженерного анализа в системах автоматизированного проектирования.				
	Рассматриваемые вопросы:				
	- основные сведения об инжереном анализе;				
	- типы и виды инженерного анализа;				
	- тьребования к модели для проведения конкретного типа анализа				

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание			
1	Лоделирование электрического прибора (на примере диода или тиристора)			
	Рассматриваемые вопросы:			
	- разработка модели электрической цепи переменного тока в			
	программном пакете Mathcad;			
	- разработка моделей тиристора и диода;			
	- анализ полученных данных.			
2	Модель электрического двигателя постоянного тока с последовательным			

№				
п/п	Наименование лабораторных работ / краткое содержание			
	возбуждением.			
	Рассматриваемые вопросы:			
	- математическое описание двигателя постоянного тока;			
	- решение в программном пакете Mathcad дифференциальных уравнений описывающем работу			
	двигателя.			
3	Моделирование двухмассовой системы.			
	Рассматриваемые вопросы:			
	- математическое описание механической двухмассовой системы;			
	- решение в Mathcad дифференциальных уравнений;			
4	- анализ графиков вертикальных колебаний.			
4	Исследование точности при моделировании колебательного процесса.			
	Рассматриваемые вопросы:			
	- оценка количества точек приходящихся на оодин период для получения нужной точности решения			
5	Разработка твёрдотельной модели простейшей детали.			
	Рассматриваемые вопросы:			
	- моделирование простейшей детали в программном пакете Soldworks; - понятие эскизной проработки модели;			
	- использование взаимосвязей в эскизе.			
6	Разработка твёрдотельной модели детали подвижного состава.			
U	Рассматриваемые вопросы:			
	- моделирование простой детали подвижного состава в программном пакете Soldworks			
7	Разработка твёрдотельной модели детали подвижного состава.			
,	Рассматриваемые вопросы:			
	- моделирование детали вращения подвижного состава в программном пакете Soldworks.			
8	Разработка сборки узла.			
Ü	Рассматриваемые вопросы:			
	- моделирование простейшей сборки в прораммном пакете Solidworks;			
	- понятие сопряжений отдельных деталей;			
	- виды и типы сопряжений сборки.			
9	Разработка модели узла механической части подвижного состава с огрвничением			
	степеней свободы по перемещению			
	Рассматриваемые вопросы:			
	- моделирование узла механической части в программном пакете Soldworks.			
10	Разработка модели узла механической части подвижного состава с огрвничением			
	степеней свободы по вращению.			
	Рассматриваемые вопросы:			
	- моделирование узла механической части в программном пакете Soldworks.			
11	Разработка модели и расчёт напряжённо-деформированного состояния узла			
**	подвижного состава.			
	Рассматриваемые вопросы:			
	- моделирование детали или узла подвижного состава с проведением инженерного анализа в виде			
	расчета напряженно-деформированного состояния.			
12	Частотный анализ узла подвижного состава.			
14	Рассматриваемые вопросы:			
	- моделирование детали или узла подвижного состава с проведением инженерного анализа в виде			
	расчета частотного анализа			
	Feet total constitution animalism			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение теоретического материала по математическому моделированию
2	Изучение параметров и разработка математических моделей тяговых электрических
	машин
3	Исследование точности решения дифференциальных уравнения различными
	численными методами
4	Изучение программной среды. Построение моделей. Навыки работы с
	программными средами для построения и расчёта математической модели.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№			
п/п	Библиографическое описание	Место доступа	
1	Введение в математическое моделирование : учебное пособие / В. Н. Ашихмин, М. Б. Гитман, И.	URL: https://e.lanbook.com/book/162966 (дата обращения: 09.05.2024)	
	Э. Келлер [и др.] ; под редакцией П. В. Трусова. — Москва : Логос, 2020. — 440 с. — ISBN 978-5-98704-637-1. — Текст : электронный	(дата обращения. 09.03.2024)	
2	Аверченков, В. И. Основы математического моделирования технических систем: учебное пособие / В. И. Аверченков, В. П. Федоров, М. Л. Хейфец. — 2-е изд. — Москва: ФЛИНТА, 2011. — 271 с. — ISBN 978-5-9765-1278-8. — Текст: электронный	Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/44652 (дата обращения: 27.10.2022)	
3	Элементы теории математических моделей А.Д. Мышкис Однотомное издание Физматлит, ВО "Наука", 1994	НТБ (уч.2); НТБ (фб.); НТБ (чз.1); НТБ (чз.4)	
4	Тарасик, В. П. Математическое моделирование технических систем: учебник / В. П. Тарасик. — Минск: Новое знание, 2013. — 584 с. — ISBN 978-985-475-539-7. — Текст: электронны	Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/4324 (дата обращения: 27.10.2022).	
5	Правила тяговых расчетов для поездной работы МПС РФ, ВНИИЖТ Однотомное издание Транспорт , 1985	Библиотека МКТ (Люблино); НТБ (уч.1); НТБ (уч.2); НТБ (уч.3); НТБ (уч.4); НТБ (уч.6); НТБ (фб.); НТБ (чз.1); НТБ (чз.2)	
6	Применение математического пакета программ Mathcad для инженерных расчетов Е.К. Рыбников, С.В. Володин; МИИТ. Каф. "Электрическая тяга" Однотомное издание МИИТ, 2004	НТБ (ЭЭ); НТБ (уч.3)	

7	Математическое моделирование в среде MathCad	НТБ (уч.6)
	К.Г. Михаилиди, Н.И. Долгачев, Л.А. Чернышев;	
	МИИТ. Каф. "Локомотивы и локомотивное	
	хозяйство" Однотомное издание МИИТ, 2005	
8	Алямовский, A. A. SolidWorks Simulation.	URL:
	Инженерный анализ для профессионалов: задачи,	https://e.lanbook.com/book/69953
	методы, рекомендации / А. А. Алямовский. —	(дата обращения: 19.05.2025).
	Москва : ДМК Пресс, 2015. — 562 с. — ISBN 978-5-	
	97060-140-2. — Текст : электронный // Лань :	
	электронно-библиотечная система.	
9	Рыбников, Т. О. Вахромеева, С. В. Володин. —	URL:
	Москва: РУТ (МИИТ), 2020. — 86 с. — Текст:	https://e.lanbook.com/book/269342
	электронный // Лань : электронно-библиотечная	(дата обращения: 19.05.2025). —
	система.	Режим доступа: для авториз.
		пользователей

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Поисковые системы: Yandex, Yahoo/

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

OC MS Windows, MS Office, MS VBA, MathLab, MathCad, Solidworks

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лекционная аудитория с мультимедиа обеспечением.

Сетевой компьютерный класс, оснащенный персональными компьютерами.

•

9. Форма промежуточной аттестации:

Зачет в 5, 6 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Электропоезда и локомотивы»

С.В. Володин

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин