МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Первый проректор

В С Тимонин

26 марта 2022 г.

Кафедра «Электроэнергетика транспорта»

Терёшкина Ирина Валерьевна Автор

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Математическое моделирование

Направление подготовки: 13.03.02 – Электроэнергетика и электротехника Профиль: Электроснабжение

Квалификация выпускника: Бакалавр

Форма обучения: очно-заочная

2018 Год начала подготовки

Одобрено на заседании Одобрено на заседании кафедры

Учебно-методической комиссии института Протокол № 9

20 мая 2019 г.

комиссии

Председатель учебно-методической Заведующий кафедрой

С.В. Володин

М.В. Шевлюгин

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Протокол № 10

15 мая 2019 г.

Подписал: Заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 15.05.2019

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина «Математическое моделирование» ставит своей целью изучение студентами принципов и методов математического моделирования, умение разработки и решение математических моделей реальных объектов и процессов с использованием современных средств вычислительной техники и стандартных пакетов прикладных программ. Задачи дисциплины:

- ? изучение основных подходов к построению и анализу математических моделей, общих для различных областей знания, не зависящих от конкретной специфики;
- ? изучение типов различных математических моделей и их свойств;
- ? формирование представлений о принципах и методах разработки различных математических моделей;
- ? изучение студентами математических методов: аналитических (точных) и численных (приближённых) для решения инженерных задач с помощью математических моделей;
- ? приобретение студентами практических навыков разработки адекватных математических моделей железнодорожной направленности, а также их алгоритмизации и программирования;
- ? научить студентов правильному анализу результатов, полученных в процессе вычислительного эксперимента.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Математическое моделирование" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Высшая математика:

Знания: понятийный аппарат дисциплины, ее методологические основы, принципы и особенности, формально-логические и эвристические методы и подходы для описания, анализа и решения профессиональных проблем.

Умения: применять методы математического анализа и аналитической геометрии для решения; экономических и управленческих задач; строить матричные модели основных систем и процессов в экономике и управлении;решать системы линейных уравнений и оценивать точность получаемых решений; осуществлять основные математические действия с матрицами и векторами;пользоваться современной вычислительной техникой в объеме, необходимом для решения;определенного набора учебных задач.

Навыки: навыками решения задач математического анализа; навыками применения современного математического инструментария для решения кономических и управленческих задач; методикой построения, анализа и применения полилинейных математических моделей дляоценки состояния и прогноза развития экономических явлений и процессов; методами решения систем линейных алгебраических уравнений, техникой преобразования систем координат и навыками приведения билинейных форм к каноническим вилам.

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Государственная итоговая аттестация

Знания: Методы расчета параметров системы электроснабжения.

Умения: Определять показатели работы устройств системы тягового электроснабжения.

Навыки: Методологий расчетов основных параметров системы тягового электроснабжения.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОПК-2 способностью применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач;	Знать и понимать: физико-математический аппарат, методы анализа теоретического и экспериментального исследования конструкционнных материалов деталей машин и подвижного состава Уметь: применять современные методы анализа и моделирования при теоретическом и экспериментальном исследовании характеристик конструкционных материалов Владеть: физико-математическим аппаратом и методами анализа характеристик конструкционных материалов
2	ПК-2 способностью обрабатывать результаты экспериментов.	Знать и понимать: основы теории интерполяции, аппроксимации и экстраполяции; численные методы интегрирования функций и дифференциальных уравнений; вероятностные законы распределения дискретных и непрерывных величин; Уметь: осуществлять выбор численного метода в зависимости от характера решаемой задачи; использовать вероятностные законы для моделирования Владеть: способами алгоритмизации численных методов интегрирования;

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

7 зачетных единиц (252 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов	
Вид учебной работы	Всего по учебному плану	Семестр 6	Семестр 7
Контактная работа	90	36,15	54,15
Аудиторные занятия (всего):	90	36	54
В том числе:			
лекции (Л)	36	18	18
практические (ПЗ) и семинарские (С)	18	0	18
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	36	18	18
Самостоятельная работа (всего)	135	72	63
Экзамен (при наличии)	27	0	27
ОБЩАЯ трудоемкость дисциплины, часы:	252	108	144
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	7.0	3.0	4.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КРаб (1), ПК1, ПК2	ПК1, ПК2	КРаб (1), ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	ЗаО, ЭК	ЗаО	ЭК

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

			F		небной до				Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
1	6	Раздел 1	12	18			28	58	ПК1
		Общие сведения о							
		моделировании и моделях							
2	6	Раздел 1					20	20	
		Общие сведения о							
		моделировании и моделях							
3	6	Тема 1.1	6	18				24	
		1.Понятие о							
		моделировании. Геометрическое, физическое, математическое							
		моделирование. Понятия							
		математического							
		моделирования и							
		математической модели.							
		2. Уровни математического							
		моделирования. Микро-, макро-							
		и метауровни математического							
		моделирования. Примеры							
		использования и области							
		применения.					20	2.4	
4	6	Тема 1.3	6				28	34	
		3.Процесс разработки математической							
		математической модели. Основные вопросы,							
		решаемые при разработке							
		математической модели.							
		Процесс моделирования.							
		Оценка полученных							
		результатов. Корректировка							
		моделей. 4.Разработка							
		математической модели в							
		процессе проектирования							
		объекта.Процесс моделирования							
		вновь создаваемого объекта. Последовательность							
		математического							
		математического моделирования. Схема изучения							
		свойств модели.							
5	6	Раздел 2	6				24	30	ЗаО, ПК2
		Математическое моделирование							- ,
		тяговых электрических машин							
6	6	Тема 2.1	6				24	30	ПК1
		1.Математическое							
		моделирование асинхронных							
		электродвигателей							
		2.Математическое							
		моделирование электрических							
		двигателей последовательного							
7	6	возбуждения Раздел 3	18	18	4		23	63	ПК1
'	U	Раздел 5 Численные методы решения	10	10	4		23	03	111/1
		тисленные методы решения		<u> </u>	l				

						еятельно герактив			Формы текущего
No	Семестр	Тема (раздел) учебной							контроля
п/п	Эем	дисциплины			Ę			0	успеваемости и промежу-
				JIP	П3/ТП	KCP	CP	Всего	точной
			П	-			_		аттестации
1	2	3	4	5	6	7	8	9	10
		обыкновенных дифференциальных уравнений							
8	7	Тема 3.1	6					6	
		Методы, основанные на							
		представлении решения в виде							
		рядов Тейлора.Представление							
		дифференциального уравнения							
		высокого порядка в форме Коши. Метод рядов Тейлора.							
9	7	Тема 3.2	8	4	4			16	
	,	Метод Эйлера для численного	O		•			10	
		решения дифференциальных							
		уравнений. Представление							
		метода Эйлера в виде							
		аналитических выражений.							
		Графическое представление метода Эйлера.							
10	7	Тема 3.3	4	14			23	41	
	·	3.Метод Рунге-Кутта четвёртого	·						
		порядка. Аналитическое							
		представление метода Рунге-							
		Кутта 4-го порядка.							
		Графическое представление							
		метода. 4.Модифицированный метод Эйлера							
11	7	Раздел 4			14		40	81	КРаб, ПК2, ЭК
	·	Системы автоматизированного							
		проектирования (САПР)							
12	7	Тема 4.1					12	12	
		1. САПР в							
		машиностроении. Типы систем							
		автоматизированного проектирования. 2. История							
		развития САПР. Создание							
		САПР. Развитие САПР от САД							
		до САЕ систем.							
13	7	Тема 4.3			14		28	42	ПК1
		3. Уровни программного							
		обеспечения.Системы							
		автоматизированного проектирования различного							
		уровня: лёгкие, средние и							
		тяжёлые САПР. 4.Основные							
		принципы работы в системах							
		автоматизированного							
1.1		проектирования.	2.5	2.5	10		107	2.52	
14		Всего:	36	36	18		135	252	

4.4. Лабораторные работы / практические занятия

Лабораторные работы предусмотрены в объеме 36 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	6	РАЗДЕЛ 1 Общие сведения о моделировании и моделях	1.Понятие о моделировании. Геометрическое, физическое, математическое моделирование. Понятия математического моделирования и математической модели. 2.Уровни математического моделирования. Микро-, макро-и метауровни математического моделирования. Примеры использования и области применения.	18
2	7	РАЗДЕЛ 3 Численные методы решения обыкновенных дифференциальных уравнений	Метод Эйлера для численного решения дифференциальных уравнений. Представление метода Эйлера в виде аналитических выражений. Графическое представление метода Эйлера.	4
3	7	РАЗДЕЛ 3 Численные методы решения обыкновенных дифференциальных уравнений Тема: 3.Метод Рунге-Кутта четвёртого порядка. Аналитическое представление метода Рунге-Кутта 4-го порядка. Графическое представление метода. 4.Модифицированный метод Эйлера	Моделирование электрического прибора (на примере диода или тиристора)	6
4	7	РАЗДЕЛ З Численные методы решения обыкновенных дифференциальных уравнений Тема: З.Метод Рунге- Кутта четвёртого порядка. Аналитическое представление метода Рунге-Кутта 4-го порядка. Графическое представление метода. 4.Модифицированный метод Эйлера	Математическая модель асинхронного электродвигателя	4

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
5	7	РАЗДЕЛ 3 Численные методы решения обыкновенных дифференциальных уравнений Тема: 3.Метод Рунге-Кутта четвёртого порядка. Аналитическое представление метода Рунге-Кутта 4-го порядка. Графическое представление метода. 4.Модифицированный метод Эйлера	Модель электрического двигателя постоянного тока с последовательным возбуждением	4
			ВСЕГО:	36/0

Практические занятия предусмотрены в объеме 18 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	7	РАЗДЕЛ 3 Численные методы решения обыкновенных дифференциальных уравнений	Метод Эйлера для численного решения дифференциальных уравнений. Представление метода Эйлера в виде аналитических выражений. Графическое представление метода Эйлера.	4
2	7	РАЗДЕЛ 4 Системы автоматизированного проектирования (САПР) Тема: 3. Уровни программного обеспечения. Системы автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые САПР. 4.Основные принципы работы в системах автоматизированного проектирования.	Моделирование двухмассовой системы	5

1 2 3 4 5 7 РАЗДЕЛ 4 Разработка модели узла механической части подвижного состава 8 подвижного состава 9 подвижного состава 3 автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые САПР. 4.Основные принципы работы в системах автоматизированного проектирования.	№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
Системы автоматизированного проектирования (САПР) Тема: 3. Уровни программного обеспечения. Системы автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые САПР. 4. Основные принципы работы в системах автоматизированного проектирования.	1	2	3	4	5
	3	1	Системы автоматизированного проектирования (САПР) Тема: 3. Уровни программного обеспечения. Системы автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые САПР. 4. Основные принципы работы в системах автоматизированного		

4.5. Примерная тематика курсовых проектов (работ)

Курсовые проекты (работы) планом не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины «Математическое моделирование» осуществляется в форме лекций и лабораторных занятий.

Лекции проводятся в традиционной организационной форме, по типу управления познавательной деятельностью и являются традиционными классически-лекционными (объяснительно-иллюстративные), а также с использованием интерактивных (диалоговых) технологий.

Лабораторные занятия организованы с использованием технологий развивающего обучения, проводятся в компьютерном классе согласно тематике, приведенной в разделе 4.4.

Самостоятельная работа студента организована с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям. К интерактивным (диалоговым) технологиям относиться отработка отдельных тем по электронным пособиям, подготовка к промежуточным контролям в интерактивном режиме, интерактивные консультации в режиме реального времени по специальным разделам и технологиям, основанным на коллективных способах самостоятельной работы студентов.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 15 разделов, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (основные приемы работы в текстовом и табличном процессорах, подготовка презентаций, основы алгоритмизации и программирования) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как защита лабораторных работ, индивидуальные и групповые опросы, решение тестов с использованием компьютеров или на бумажных носителях.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	6	З РАЗДЕЛ 1 Общие сведения о моделировании и моделях Тема 3: 3.Процесс разработки математической модели. Основные вопросы, решаемые при разработке математической модели. Процесс моделирования. Оценка полученных результатов. Корректировка моделей. 4.Разработка математической модели в процессе проектирования объекта. Процесс моделирования вновь создаваемого объекта. Последовательность математического моделирования. Схема	Изучение теоретического материала по математическому моделированию	5 28
2	6	изучения свойств модели. РАЗДЕЛ 2 Математическое моделирование тяговых электрических машин Тема 1: 1.Математическое моделирование асинхронных электродвигателей 2.Математическое моделирование электрических двигателей последовательного	Изучение параметров и разработка математических моделей тяговых электрических машин	24
3	7	возбуждения РАЗДЕЛ З Численные методы решения обыкновенных дифференциальных уравнений Тема 3: 3.Метод Рунге- Кутта четвёртого порядка. Аналитическое представление метода Рунге-Кутта 4-го	Исследование точности решения дифференциальных уравнения различными численными методами	23

4	7	порядка. Графическое представление метода. 4.Модифицированный метод Эйлера РАЗДЕЛ 4 Системы автоматизированного проектирования (САПР)	1. САПР в машиностроении. Типы систем автоматизированного проектирования. 2. История развития САПР. Создание САПР. Развитие САПР от САD до САЕ систем.	12
5	7	РАЗДЕЛ 4 Системы автоматизированного проектирования (САПР) Тема 3: 3. Уровни программного обеспечения. Системы автоматизированного проектирования различного уровня: лёгкие, средние и тяжёлые САПР. 4.Основные принципы работы в системах автоматизированного проектирования.	Изучение программной среды. Построение моделей. Навыки работы с программными средами для построения и расчёта математической модели.	28
6	6		Общие сведения о моделировании и моделях	20
	L	1	ВСЕГО:	135

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

				Используется
No	Наименование	Автор (ы)	Год и место издания	при изучении
п/п	1101110201110	11210 (21)	Место доступа	разделов, номера
				страниц
1	Введение в математическое	В.Н.Ашихмин,	М.: Логос, 2008	Все разделы
	моделирование. Учебное	М.Б.Гитман,	http://library.miit.ru	
	пособие	О.Б.Наймарк и др.		
2	Основы математического	Аверченков В.И.,	М.: Флинта, 2011	Все разделы
	моделирования технических	Федоров В.П., Хейфец	http://library.miit.ru	
	систем: учебное пособие	М.Л.		
3	Элементы теории	МышкисА.Д.	М.: КомКнига, 2007	Все разделы
	математических моделей		http://library.miit.ru	1
4	Математическое	Тарасик В.П.	Мн.: Дизайн-ПРО,	Все разделы
	моделирование технических		2004	1
	систем: Учебник для вузов		http://library.miit.ru	
5	Вычисления в MathCad 12	Гурский Д.А., Турбина	СПб.: Питер, 2006	Все разделы
		E.C.	http://library.miit.ru	1 ,,
6	Математическое	Михаилиди Константин	МИИТ, 2005	68с. Часть 1
	моделирование в среде	Георгиевич; Долгачев		
	MathCad	Николай Иванович;	НТБ (уч.6)	
		Чернышов	,	
7	Математическое	Михаилиди Константин	МИИТ, 2005	88с. Часть 3
	моделирование в среде	Георгиевич; Долгачев		
	MathCad	Николай Иванович;	НТБ (уч.6)	
		Чернышов Леонид		
		Анатольевич		

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
8	Компьютерное моделирование физических процессов в пакете MatLab	Поршнев С.В.	М.: Горячая линия - Телеком, 2008 http://library.miit.ru	Все разделы
9	Математическое и компьютерное моделирование процессов и систем в среде MATLAB/ SIMULINK.	Васильев В.В., Симак Л.А., Рыбникова А.М.	К.: НАН Украины, 2008 http://library.miit.ru	Все разделы
10	Правила тяговых расчётов для поездной работы		M.: Транспорт, 1985 http://library.miit.ru	Все разделы
11	Математические модели в точных и гуманитарных науках	Зайцев В.Ф.	СПб: ООО «Книжный дом», 2006 http://library.miit.ru	Все разделы
12	Математическое моделирование в среде MathCad	Михаилиди Константин Георгиевич; Долгачев Николай Иванович; Чернышов	МИИТ, 2005 НТБ (уч.6)	60 с. Часть 2
13	MathCad 12 для студентов и инженеров.	Очков В.Ф.	СПб.: БХВ- Петербург, 2005 http://library.miit.ru	Все разделы
14	Поиск оптимальных решений средствами Excel 7.0.	Курицкий Б.Я.	СПб.: ВНV - Санкт- Петербург, 2007 http://library.miit.ru	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

Базы данных и информационно-справочные системы:

Федеральный портал «Российское образование» http://www.edu.ru/

Федеральный центр информационно-образовательных ресурсов (ФЦИОР)

http://www.fcior.edu.ru/

Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/

Поисковые системы: Yandex, Google, Yahoo!, Rambler.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

OC MS Windows XP или Vista, MS Office 2007, MS VBA, MathLab, MathCad.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Сетевой компьютерный класс, оснащенный персональными компьютерами на платформе IBM PC. Канал связи с Интернетом со скоростью не менее 5 мбит/сек.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)