МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 27.03.04 Управление в технических системах, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Методы исследований систем управления и передачи информации

Направление подготовки: 27.03.04 Управление в технических системах

Направленность (профиль): Интеллектуальные транспортные системы.

Для студентов КНР

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 2053

Подписал: заведующий кафедрой Баранов Леонид Аврамович Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) «Методы исследований систем управления и передачи информации» являются:

- изучение методов численных решения и оценки составляющих погрешности решения математических задач моделирования систем управления транспортными средствами и передачи иформации;
- формирование навыков разработки прикладного программного обеспечения систем управления и исследования их свойств.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

Научно-исследовательская деятельность:

анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования;

проведение вычислительных экспериментов с использованием стандартных программных средств с целью получения математических моделей процессов функционирования систем управления и передачи информации.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области естественных наук и математики;
- **ОПК-3** Способен использовать фундаментальные знания для решения базовых задач управления в технических системах с целью совершенствования в профессиональной деятельности;
- **ОПК-4** Способен осуществлять оценку эффективности систем управления, разработанных на основе математических методов;
- **ПК-4** Способен проводить вычислительные эксперименты с использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления;
- **ПК-5** Способен участвовать в составлении аналитических обзоров и научно-технических отчетов по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- разработки систем управления и их внедрения в производственной и непроизводственной сферах
- стандартные программные средства с целью получения математических моделей процессов и объектов автоматизации и управления.
- научно-технические отчеты по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок

Уметь:

- Выбирать критерии качества управления. Сравнивает варианты решения задачи управления в технических системах. В соответствии с критериями качества выбирает вариант решения.
- грамотно и обоснованно выбирать, и применять методы решения типовых задач управления в технических системах, используя знания, полученные в процессе обучения.
- Использовать изучение знания, умения и навыки для разработки алгоритма решения задачи управления в технических системах.
- Вычислять критерии качества управления в технических системах и оценивает результат решения задач.
- Применять современные программные и технические средства при разработке моделей АСУ, процессов и объектов автоматизации и управления.

Владеть:

- методикой выбора критериев качества управления в технических системах и оценки возможности их использования при решении задачи.
- навыками анализа научно-технической информации и результатов исследований в профессиональной области.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Коли	Количество часов	
	Всего	Семестр №4	
Контактная работа при проведении учебных занятий (всего):	80	80	

В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
Π/Π			
1	Введение		
	Рассматриваемые вопросы:		
	- Задачи исследования систем управления и передачи информации		
2	Погрешности методов исследований и их оценка		
	Рассматриваемые вопросы:		
	- Введение.		
	- Задачи методов исследований.		
	- Содержание курса.		
	- Составляющие погрешности: модели, вычислительная, методическая, от неточности исходных		
	данных и их оценка.		
	- Понятие близости точных и приближенных решений.		
	- Метрика и норма векторов, матриц и функций.		
3	Точные методы решения линейных систем алгебраических уравнений		
	Рассматриваемые вопросы:		
	- Существование и единственность решения.		
	- Методы Гаусса, главного элемента, прогонки.		
	- Мера обусловленности системы.		
	- Уточнение решений.		
4	Итерационные методы решения линейных систем уравнений		
	Рассматриваемые вопросы:		
	- Метод Зейделя.		
	- Условия сходимости.		

No			
п/п	Тематика лекционных занятий / краткое содержание		
	- Оценка погрешности.		
5	Методы решения нелинейных уравнений и систем		
	Рассматриваемые вопросы:		
	- Отделения и уточнения корней.		
	- Методы дихотомии.		
	- Методы простых итераций, касательных, хорд и секущих.		
	- Метод парабол.		
	- Явление разболтки.		
	- Прием Гаврика.		
	- Удаление корней.		
	- Решение систем линейных алгебраических уравнений методами простых итераций и Ньютона.		
6	Методы аппроксимации и интерполяции		
	Рассматриваемые вопросы:		
	- Понятия аппроксимации, интерполяции, экстраполяции.		
	- Погрешности интерполяции многочленами.		
	- Метод неопределенных множителей.		
	- Интерполяционный многочлен Лагранжа.		
	- Разделенные и конечные разности.		
	- Интерполяционный многочлен Ньютона.		
	- Интерполяция сплайнами.		
	- Нелинейная интерполяция.		
	- Метод наименьших квадратов.		
7	Численное дифференцирование		
	Рассматриваемые вопросы:		
	- Формулы численного дифференцирования.		
	- Погрешность методическая и от неточности исходных данных.		
	- Простейшие формулы.		
	- Формулы дифференцирования в реальном времени.		
8	Численное интегрирование		
	Рассматриваемые вопросы:		
	- Квадратурные формулы прямоугольников, трапеций, Симпсона, Эйлера-Маклорена.		
	- Правило Рунге.		
	- Формулы Грегори.		
	- Процесс Эйткена.		
	- Интерполяционные квадратурные формулы.		
	- Кратные интегралы.		
	- Метод статистических испытаний.		
9	Методы решения систем обыкновенных дифференциальных уравнений		
	Рассматриваемые вопросы:		
	- Задача Коши и краевая задача.		
	- Методы Эйлера первого и второго порядка.		
	- Оценка составляющих погрешности.		
	- Методы Рунге-Кутта, Адамса.		
	- Решение краевых задач методом стрельб. - Разностные методы.		
10			
10	Методы решения систем дифференциальных уравнений в частных производных		
	Рассматриваемые вопросы:		
	- Разностные схемы.		
	- Шаблоны.		
	- Послойное решение.		

№ π/π	Тематика лекционных занятий / краткое содержание
	- Невязка. - Условиеустойчивости решения.

4.2. Занятия семинарского типа.

Практические занятия

$N_{\underline{0}}$	T		
п/п	Тематика практических занятий/краткое содержание		
1	Линейные алгебраические уравнения методами Гаусса		
	В результате работы на практическом занятии студент отрабатывает умения в решении систем линейных алгебраических уравнений метолами Гаусса, главного элемета.		
2	Линейные алгебраические уравнения методами простых итераций, Зейделя		
	В результате работы на практическом занятии студент отрабатывает умения решать системы линейных алгебраических уравнений методами простых итераций, Зейделя.		
3	Нелинейные алгебраические уравнения методами дихотомии		
	В результате работы на практическом занятии студент отрабатывает умения решать нелинейные алгебраические уравнения методами дихотомии, простых итераций, касательных, хорд и секущих.		
4	Интерполяция многочленами Лагранжа и Ньютона.		
	В результате выполнения работы на практическом занятии студент изучает особенности		
	интерполяции многочленами Лагранжа и Ньютона и изучает конечные и разделенные разности.		
5	Численное дифференцирование		
	В результате выполнения работы студент изучает численные дифференцирование и рассматривает		
	особенности оценки погрешности методической и от неточности исходных данных.		
6	Численное интегрирование		
	В результате работы студент рассматривает численные интегрирования с использованием		
	квадратурных формул прямоугольников, трапеций, Симпсона.		
7	Формулы численного решения систем обыкновенных дифференциальных уравнений		
	В результате выполнения работы студент рассматривает формулы численного решения систем		
	обыкновенных дифференциальных уравнений метолами Эйлера, Рунге Кутта, формулы оценки		
	составляющих погрешностей, алгоритмы численного решения систем обыкновенных		
	дифференциальных уравнений.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Изучение дополнительной литературы.	
2	Подготовка к практическим занятиям.	
3	Выполнение курсовой работы.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

Выполнение курсовой работы имеет целью развитие у обучающихся навыков самостоятельной творческой работы, овладение методами

современных научных исследований, углублённое изучение какого-либо вопроса, темы, раздела учебной дисциплины (включая изучение литературы и источников) и носит исследовательский характер. Целью курсовой работы является овладение методами разработки математического и программного обеспечения для численного решения систем обыкновенных дифференциальных уравнений. Примеры вариантов исходных данных приведены в приложении (см. Приложение 1).

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/ π 1	Библиографичес кое описание Численные методы Е.А. Волков Лань, - 256 с., ISBN 978- 5-8114-0538-1,	Место доступа https://e.lanbook.com/book/54
2	2008 Численные методы У. Г. Пирумов Дрофа, - 221 с., ISBN: 978-5-358-03758- 8, 2007	https://www.labirint.ru/books/271114/
3	Численные методы и программирован ие В.Д. Колдаев ИД «Форум» - ИНФА-М, - 336 с., ISBN 978-5-8199-0333-9, 2013	https://lib.fbtuit.uz/assets/files/koldaev_vd_chislennye_metody_i_programmi rovanie.pdf
4	Основы вычислительной матеметики Демдович Б.П., Марон И.А. Наука, - 664 с., 1966	https://ikfia.ysn.ru/wp-content/uploads/2018/01/DemidovichMaron1966ru.pdf
5	Основы вычислительной матеметики	https://e.lanbook.com/book/2025

Демдович Б.П.,	
Марон И.А.	
СПб.: Изд.	
«Лань», - 672 с.,	
ISBN 978-5-	
8114-0695-1,	
2011	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office

Пакет прикладных программ delphi

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовая работа в 4 семестре.

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

В.М. Максимов

Согласовано:

Заведующий кафедрой УиЗИ Л.А. Баранов

Председатель учебно-методической

комиссии С.В. Володин