МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 26.03.03 Водные пути, порты и гидротехнические сооружения, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Механика жидкости и газа в проектировании воднотранспортных сооружений

Направление подготовки: 26.03.03 Водные пути, порты и

гидротехнические сооружения

Направленность (профиль): Проектирование, строительство, эксплуатация

водных путей и гидротехнических

сооружений

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: заведующий кафедрой Сахненко Маргарита

Александровна

Дата: 30.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами законов движения жидкостей и газов;
- изучение студентами методов расчета и и конструирования гидравлических систем и устройств;
- изучение студентами ообенностей эксплуатации гидравлических систем и устройств.

Задачами дисциплины (модуля) являются:

- формирование навыков расчета и конструирования судовых, портовых и гидротехнических гидравлических систем и устройств;
- формирование навыков эксплуатации судовых, портовых и гидротехнических гидравлических систем и устройств.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук;
- **ПК-2** Способен к организации и контролю технической эксплуатации, качества ремонта, реконструкции и модернизации гидротехнических сооружений водного транспорта;
- **ПК-3** Способен осуществлять проектирование гидротехнических сооружений и сооружений береговой инфраструктуры водного транспорта;
- **ПК-12** Способен к анализу и разработке проектной и эксплуатационной нормативно-технической документации гидротехнических сооружений и водных путей.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- законы движения жидкостей в судовых, портовых и гидротехнических гидравлических системах и устройствах;
- законы движения газов в судовых, портовых и гидротехнических гидравлических системах и устройствах;
- принципы работы типовых портовых гидравлических систем и устройств;

- принципы работы типовых судовых, и гидротехнических гидравлических систем и устройств.

Уметь:

- определять принципы регулирования параметров типовых судовых, гидравлических систем и устройств;
- определять принципы регулирования параметров типовых портовых гидравлических систем и устройств;
- определять принципы регулирования параметров типовых гидротехнических гидравлических систем и устройств;
- определять состав и конструкции систем регулирования этих параметров.

Владеть:

- методами расчета судовых гидравлических систем и устройств;
- методами расчета портовых и гидротехнических гидравлических систем и устройств;
 - методами эксплуатации судовых гидравлических систем и устройств;
- методами эксплуатации портовых и гидротехнических гидравлических систем и устройств.
- методами расчета судовых, портовых и гидротехнических гидравлических систем и устройств;
- методами эксплуатации судовых, портовых и гидротехнических гидравлических систем и устройств.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Введение.	
	Рассматриваемые вопросы:	
	-краткая история развития гидравлики;	
	-определение понятия «жидкость»;	
	-основные физические свойства жидкости:	
	плотность, вязкость, сжимаемость,	
	сопротивление растягивающим усилиям,	
	поверхностное натяжение, капиллярное поднятие жидкости.	
2	Статики жидкостей.	
	Рассматриваемые вопросы:	
	-массовые и поверхностные силы, действующие в жидкостях;	
	-нормальные икасательные напряжения поверхностных сил; -гидростатическое давление;	
	-общие законы и уравнения статики жидкостей и газов:	
	закон Паскаля;	
	уравнения гидростатики Эйлера;	
	основное уравнение гидростатического давления;	
	силы давления на поверхности тела;	
	закон Архимеда, плавание тел.	
3	Кинематика жидкостей.	
	Рассматриваемые вопросы:	
	- основные характеристики течения: скорость, ускорение, линия тока, трубка тока, живое сечение,	
	расход;	
	- общие законы и уравнения движения жидкости:	
	уравнения Навье – Стокса, уравнение Бернулли для	
	установившихся течений невязкой (идеальной) и вязкой жидкостей; геометрическое и	
	энергетическое истолкование уравнений Бернулли.	

№ п/п	Тематика лекционных занятий / краткое содержание		
	П		
4	Динамика жидкости.		
	Рассматриваемые вопросы:		
	- ламинарный и турбулентный режимы течения жидкости;		
	- движение жидкости в трубопроводах;		
	- уравнения Рейнольдса;		
	- гидравлический удар в трубопроводах. Формула Жуковского. Меры по предотвращению гидроудара.		
5	Потери энергии при движении жидкости в трубопроводах.		
	Рассматриваемые вопросы:		
	- формулы Дарси и Шези;		
	- расчет коэффициентов потерь на трение		
	для гидравлически гладких и шероховатых		
	поверхностей;		
	- местные гидравлические сопротивления;		
	- потери напора при внезапном и постепенном		
	сужении или расширении потока;		
	- истечение жидкости из отверстия при постоянном и переменном напоре.		
6	Гидравлические машины и гидропривод.		
	Рассматриваемые вопросы:		
	- классификация насосов;		
	- лопастные насосы. их конструкция и принцип действия, основные характеристики;		
	- гидроцилиндры и гидродвигатели.		
7	Основные законы статики и динамики сжимаемой жидкости.		
	Рассматриваемые вопросы:		
	- распределение давления в газе по высоте;		
	- барометрическая формула;		
	- уравнение Бернулли для идеального и вязкого газа.		
8	Основные законы динамики сжимаемой жидкости.		
	Рассматриваемые вопросы:		
	- движение жидкости в трубе постоянного сечения;		
	- движение жидкости в трубе переменного сечения;		
	-движение жидкости в постепенно сужающемся канале.		
<u> </u>			

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Основное уравнение гидростатики и относительного равновесия жидкости.		
	В результате проведения лабораторной работы студент получает навык экспериментальной проверки		
	основного уравнения гидростатики и параметров относительного равновесия жидкости в равномерно		
	вращающемся сосуде.		
2	Кинематические характеристики движения жидкости.		
	В результате проведения лабораторной работы студент изучает кинематические характеристики		
	движения жидкости с использованием трубки Пито и водомера Вентури.		
3	Уравнение Бернулли.		
	В результате проведения лабораторной работы студент изучает уравнение Бернулли в ходе		
	экспериментальной демонстрации.		
4	Ламинарный и турбулентный режимы течения жидкости.		
	В результате проведения лабораторной работы студент получает навыки расчета параметров течения		

№ п/п	Наименование лабораторных работ / краткое содержание
	жидкости в различных режимах.

Практические занятия

<u>No</u>	Тематика практических занятий/краткое содержание		
п/п			
1	Свойства жидкостей.		
	В результате выполнения практического задания студент получает знания о свойствах различных		
	жидкостей и их изменениях.		
2	Положение равновесия жидкости при постоянном ускорении.		
	В результате выполнения практического задания студент получает навык определения формы		
	свободной поверхности жидкости в системах с переменными скоростями или вращением.		
3	Уравнение Бернулли.		
	В результате выполнения практической работы студент получает навыки расчета распределения		
	напора и скорости вв различных гидравлических устройствах.		
4	Ламинарный и турбулентный режимы течения жидкости.		
	В результате выполнения практической работы студент получает навыки расчета параметров течения		
	жидкости в различных режимах.		
5	Истечение жидкости через отверстия и насадки.		
	В результате выполнения практической работы студент получает навык определения формы и		
	скорости струй и методов их регулирования.		
6	Гидравлические машины.		
	В результате выполнения практического задания студент получает знания о режимах работы		
	лопастных насосов и методах их регулирования.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с конспектом лекций, изучение литературы.
2	Подготовка к лабораторным работам.
3	Подготовка к практическим занятиям.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Доманский, И. В. Механика жидкости и газа /	https://e.lanbook.com/book/277058 (дата
	И. В. Доманский, В. А. Некрасов. — 2-е изд.,	обращения: 25.02.2025).
	стер. — Санкт-Петербург : Лань, 2023. — 140	
	с. — ISBN 978-5-507-45645-1. — Текст :	
	электронный // Лань : электронно-	

	библиотечная система.	
2	Моргунов, К. П. Механика жидкости и газа /	https://e.lanbook.com/book/332123 (дата
	К. П. Моргунов. — 4-е изд., стер. — Санкт-	обращения: 25.02.2025).
	Петербург: Лань, 2023. — 208 с. — ISBN	
	978-5-507-47902-3. — Текст : электронный //	
	Лань: электронно-библиотечная система.	
3	Механика жидкости и газа: учебное пособие	https://e.lanbook.com/book/363710 (дата
	/ Е. Н. Миркина, О. В. Михеева, С. С. Орлова,	обращения: 25.02.2025).
	Т. А. Панкова. — Саратов: Вавиловский	
	университет, 2022. — 85 с. — ISBN 978-5-	
	9999-3572-4. — Текст : электронный // Лань :	
	электронно-библиотечная система.	
4	Шейпак, А. А. Гидравлика и	https://znanium.ru/catalog/product/1758026
	гидропневмопривод. Основы механики	(дата обращения: 25.02.2025).
	жидкости и газа : учебник / А. А. Шейпак. —	
	6-е изд., испр. и доп. — Москва : ИНФРА-М,	
	2022. — 272 с. — (Высшее образование:	
	Бакалавриат) ISBN 978-5-16-011848-2	
	Текст : электронный.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система Microsoft Windows
 - 2. Офисный пакет приложений MS Office (Word, Excel, PowerPoint)
 - 3. Система автоматизированного проектирования Autocad
 - 4. Система автоматизированного проектирования Revit
- 5. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие

средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Telegram и т.п.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Лабораторные работы проводятся на тренажерах:

- «Лабораторный комплекс исследования динамики донных отложений и наносов (Лабораторная установка по изучению механики жидкости)»;
 - «Гидравлический лоток-гидравлика сооружений и волновых явлений»;
- Типовой комплект учебного оборудования «Истечение жидкости из отверстий и насадков».
 - 9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

А.Р. Белоусов

Согласовано:

Заведующий кафедрой ВППиПО М.А. Сахненко

Председатель учебно-методической

комиссии А.А. Гузенко