МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 26.03.03 Водные пути, порты и гидротехнические сооружения,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Механика жидкости и газа

Направление подготовки: 26.03.03 Водные пути, порты и

гидротехнические сооружения

Направленность (профиль): Проектирование, строительство, эксплуатация

водных путей и гидротехнических

сооружений

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: заведующий кафедрой Сахненко Маргарита

Александровна

Дата: 30.10.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами законов движения жидкостей и газов;
- изучение студентами методов расчета и и конструирования гидравлических систем и устройств;
- изучение студентами ообенностей эксплуатации гидравлических систем и устройств.

Задачами дисциплины (модуля) являются:

- формирование навыков расчета и конструирования судовых, портовых и гидротехнических гидравлических систем и устройств;
- формирование навыков эксплуатации судовых, портовых и гидротехнических гидравлических систем и устройств.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук;
- **ПК-2** Способен к организации и контролю технической эксплуатации, качества ремонта, реконструкции и модернизации гидротехнических сооружений водного транспорта;
- **ПК-3** Способен осуществлять проектирование гидротехнических сооружений и сооружений береговой инфраструктуры водного транспорта;
- **ПК-12** Способен к анализу и разработке проектной и эксплуатационной нормативно-технической документации гидротехнических сооружений и водных путей.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- -законы движения жидкостей и газов в судовых, портовых и гидротехнических гидравлических системах и устройствах;
- принципы работы типовых судовых, портовых и гидротехнических гидравлических систем и устройств.

Уметь:

- определять принципы регулирования параметров типовых судовых,

портовых и гидротехнических гидравлических систем и устройств;

-определять состав и конструкции систем регулирования этих параметров.

Владеть:

- методами расчета судовых, портовых и гидротехнических гидравлических систем и устройств;
- методами эксплуатации судовых, портовых и гидротехнических гидравлических систем и устройств.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
ин учсоных занятии	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

$N_{\underline{0}}$	_		
п/п	Тематика лекционных занятий / краткое содержание		
1	Введение.		
	Рассматриваемые вопросы:		
-краткая история развития гидравлики;			
	-определение понятия «жидкость»;		
	-основные физические свойства жидкости:		
	плотность, вязкость, сжимаемость,		
	сопротивление растягивающим усилиям,		
	поверхностное натяжение, капиллярное поднятие жидкости.		
2	Статики жидкостей.		
	Рассматриваемые вопросы:		
	-массовые и поверхностные силы, действующие в жидкостях;		
	-нормальные икасательные напряжения поверхностных сил;		
	-гидростатическое давление;		
	-общие законы и уравнения статики жидкостей и газов:		
	закон Паскаля;		
	уравнения гидростатики Эйлера;		
	основное уравнение гидростатического давления;		
	силы давления на поверхности тела;		
	закон Архимеда, плавание тел.		
3	Кинематика жидкостей.		
	Рассматриваемые вопросы:		
	- основные характеристики течения: скорость, ускорение, линия тока, трубка тока, живое сечение,		
	расход;		
	- общие законы и уравнения движения жидкости:		
	уравнения Навье – Стокса, уравнение Бернулли для		
	установившихся течений невязкой (идеальной) и вязкой жидкостей; геометрическое и		
4	энергетическое истолкование уравнений Бернулли.		
4	Динамика жидкости.		
	Рассматриваемые вопросы:		
	- ламинарный и турбулентный режимы течения жидкости;		
	- движение жидкости в трубопроводах;		
	- уравнения Рейнольдса;		
5	- гидравлический удар в трубопроводах. Формула Жуковского. Меры по предотвращению гидроудара.		
3	Потери энергии при движении жидкости в трубопроводах.		
	Рассматриваемые вопросы:		
	- формулы Дарси и Шези;		
	- расчет коэффициентов потерь на трение		
	для гидравлически гладких и шероховатых поверхностей;		
	- местные гидравлические сопротивления;		
	- местные гидравлические сопротивления, - потери напора при внезапном и постепенном		
	сужении или расширении потока;		
	- истечение жидкости из отверстия при постоянном и переменном напоре.		
6	Гидравлические машины и гидропривод.		
	Рассматриваемые вопросы:		
	и ассматриваемые вопросы.		

№ п/п	Тематика лекционных занятий / краткое содержание
	Классификация насосов
	Лопастные насосы. их конструкция и принцип действия, основные характеристики.
	Гидроцилиндры и гидродвигатели.
7	Основные законы статики и динамики сжимаемой жидкости.
	Рассматриваемые вопросы:
	Распределение давления в газе по высоте.
	Барометрическая формула.
	Уравнение Бернулли для идеального и вязкого газа.
	Движение газа в трубе постоянного сечения, переменного сечения и в
	постепенно сужающемся канале.

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Основное уравнение гидростатики.		
	В результате проведения лабораторной работы студент получает навык экспериментальной проверки		
	основного уравнения гидростатики.		
2	Относительное равновесие жидкости.		
	В результате проведения лабораторной работы студент получает навык определения параметров		
	относительного равновесия жидкости в равномерно вращающемся сосуде.		
3	Кинематические характеристики движения жидкости.		
	В результате проведения лабораторной работы студент изучает кинематические характеристики движения жидкости с использованием трубки Пито и водомера Вентури.		
4	М		
	В результате проведения лабораторной работы студент изучает уравнение Бернулли в ходе		
	экспериментальной демонстрации.		
5	Коэффициент гидравлического сопротивления.		
	В результате проведения лабораторной работы студент получает навык экспериментального		
	определения коэффициента гидравлического сопротивления.		
6	М		
	В результате проведения лабораторной работы студент изучает истечение жидкости через отверстия и		
	насадки при постоянном и переменном напоре.		

Практические занятия

	1	
$N_{\underline{0}}$	Тематика практических занятий/краткое содержание	
п/п	томини принин зомини принист обдержини	
1	Свойства жидкостей.	
	В результате выполнения практического задания студент получает знания о свойствах различных	
	жидкостей и их изменениях.	
2	Положение равновесия жидкости при постоянном ускорении.	
	В результате выполнения практического задания студент получает навык определения формы	
	свободной поверхности жидкости в системах с переменными скоростями или вращение.	
3	Уравнение Бернулли.	
	В результате выполнения практической работы студент получает навыки расчета распределения	
	напора и скорости вв различных гидравлических устройствах.	
4	Ламинарный и турбулентный режимы течения жидкости.	

№ п/п	Тематика практических занятий/краткое содержание		
	В результате выполнения практической работы студент получает навыки расчета параметров течения		
	жидкости в различных режимах.		
5	Истечение жидкости через отверстия и насадки.		
	В результате выполнения практической работы студент получает навык определения формы и		
	скорости струй и методов их регулирования.		
6	Гидравлические машины.		
	В результате выполнения практического задания студент получает знания о режимах работы		
	лопастных насосов и методах их регулирования.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Работа с конспектом лекций, изучение литературы.	
2	Подготовка к лабораторным работам.	
3	Подготовка к практическим занятиям.	
4	Выполнение курсовой работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

- 1.Определение величины силы и положение центра давления жидкости на плоскую стенку заданной формы
- 2.Определение потерь и потребного напора жидкости в гидролинии заданной конфигурации

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Гиргидов, А. Д. Механика жидкости и газа (гидравлика): учебник / А. Д. Гиргидов. —	https://znanium.com/catalog/product/1136795 (дата обращения: 24.04.2023) - Текст :
	2-е изд., испр. и доп. — Москва : ИНФРА-	электронный
	M, 2021. — 704 с. — (Высшее образование: Бакалавриат) ISBN 978-5-16-013367-6.	
2	Шейпак, А. А. Гидравлика и	https://znanium.com/catalog/product/1758026
	гидропневмопривод. Основы механики	(дата обращения: 25.04.2023) Текст : электронный
	жидкости и газа: учебник / А.А. Шейпак.	электронный
	— 6-е изд., испр. и доп. — Москва : ИНФРА-М, 2022. — 272 с. — (Высшее	
	образование: Бакалавриат) ISBN 978-5-	

	16-011848-2	
3	Пивнев, П. П. Механика сплошных сред.	https://znanium.com/catalog/product/1088109
	Жидкости и газы : учебное пособие / П. П.	(дата обращения: 25.04.2023) Текст :
	Пивнев, С. П. Тарасов, А. П. Волощенко;	электронный.
	Южный федеральный университет	
	Ростов-на-Дону; Таганрог: Издательство	
	Южного федерального университета, 2019.	
	- 137 c ISBN 978-5-9275-3096-0.	
4	Соловьев, А.А. Механика жидкости.	https://znanium.com/catalog/product/1026151
	Лабораторный практикум / А.А. Соловьев,	(дата обращения: 25.04.2023) Текст:
	А.В. Исаков М.: Альтаир-МГАВТ, 2018.	электронный.
	— 128 c.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система Microsoft Windows
 - 2. Офисный пакет приложений MS Office (Word, Excel, PowerPoint)
 - 3. Система автоматизированного проектирования Autocad
 - 4. Система автоматизированного проектирования Revit
- 5. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Telegram и т.п.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные

компьютерной техникой и наборами демонстрационного оборудования.

Лабораторные работы проводятся на тренажерах:

- «Лабораторный комплекс исследования динамики донных отложений и наносов (Лабораторная установка по изучению механики жидкости)»;
 - «Гидравлический лоток-гидравлика сооружений и волновых явлений»;
- Типовой комплект учебного оборудования «Истечение жидкости из отверстий и насадков».

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

Курсовая работа в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

А.Р. Белоусов

Согласовано:

Заведующий кафедрой ВППиПО М.А. Сахненко

Председатель учебно-методической

комиссии А.А. Гузенко