МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 23.03.02 Наземные транспортно-технологические комплексы,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Механика и основы прочности в транспортном комплексе

Направление подготовки: 23.03.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Стандартизация метрология И В

транспортном комплексе

Форма обучения: Очная

> Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3409

Подписал: заведующий кафедрой Карпычев Владимир

Александрович

Дата: 10.04.2023

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины "Ммеханика и основы прочности в транспортном комплексе" является:

- освоение основных законов механики и разработки на их основе закономерностей для использования их при решении конкретных задач, связаных с изучением движения как отдельных твердых тел, так и тел, входящих в состав механизмов и машин.

Задачами является:

- получение знаний, умений и владение указанными выше законами и их закономерностями, что позволяет повышать качество экспериментальных и конструкторских работ при создании новых и при эксплуатации существующих механизмов и машин.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен принимать обоснованные технические решения, выбирать эффективные и безопасные технические средства и технологии при решении задач профессиональной деятельности;
- **УК-1** Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные положения законодательства Российской Федерации;
- документы в области стандартизации, регламентирующие профессиональную деятельность.

Уметь:

- правильно формулировать цели и задачи контроля качества, формы и методы осуществления.

Владеть:

- программными средствами оформления текстовых и графических документов в составе проектной и технологической документации в соответствии с требованиями ЕСКД и ЕСТД.
 - 3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№ 2	№ 3	
Контактная работа при проведении учебных занятий (всего):		32	64	
В том числе:				
Занятия лекционного типа		16	32	
Занятия семинарского типа		16	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 120 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Предмет статики. Аксиомы.	
	Рассматриваемые вопросы:	
	- связи и их реакции;	
	- условие равновесия системы тел;	
	- статически определимые и неопределимые системы тел.	

No॒	T	
п/п	Тематика лекционных занятий / краткое содержание	
2	Твердое тело.	
	Рассматриваемые вопросы:	
	- теорема о трех силах на плоскости;	
	- сложение сил;	
	- использование закономерностей статики при синтезе и анализе механизмов.	
3	Условие равновесия системы сил.	
	Рассматриваемые вопросы:	
	- теорема Вариньона;	
	- сложение сил;	
	- использование закономерностей статики при синтезе и анализе механизмов.	
4	Угловые скорости и ускорения при вращательном движении материальной точки.	
	Рассматриваемые вопросы:	
	- траектория, линейные скорости и ускорения материальной точки при:поступательном,	
	вращательном и плоско-параллельном движении.	
5	Переносные, относительные и абсолютные скорости и ускорения материальной	
	точки при ее плоско-параллельном движении.	
	Рассматриваемые вопросы:	
	- условия, при которых дополнительно проявляются повторно (креолисово) ускорение этой точки.	
6	Законы механики.	
	Рассматриваемые вопросы:	
	- законы Ньютона;	
	- использование их в механизмах.	
7	Работа и мощность.	
	Рассматриваемые вопросы:	
	- работа силы тяжести;	
	- коэффициент полезного механизма;	
	- общие теоремы динамики;	
	- количество движения и импульсы сил;	
	- кинетическая энергия движущейся материальной точки.	
8	Кинетические пары и их классификация.	
	Рассматриваемые вопросы:	
	- избыточные связи;	
0	- кинетическое исследование механизмов (метод планов).	
9	Группы Ассура в механизмах и их классификация.	
	Рассматриваемые вопросы:	
	- трение в механизмах;	
10	- явление самоторможения.	
10	Зубчатые механизмы и их виды.	
	Рассматриваемые вопросы: - эвольвентное зацепление;	
	- эвольвентное зацепление, - основные параметры изготовление зубчатых колес.	
11	Силы инерции звеньев механизмов.	
11	Рассматриваемые вопросы:	
	- кинетическое исследование механизмов (принцип Доламбера).	
12		
12	Статическая и динамическая балансировка вращающихся звеньев, механизмов.	
	Рассматриваемые вопросы: - статическая балансировка вращающихся звеньев, механизмов;	
	- статическая оалансировка вращающихся звеньев, механизмов; - динамическа балансировка вращающихся звеньев, механизмов.	
	динали поска оаланопровка вращающимся эвепвев, меманизмов.	

No		
п/п	Тематика лекционных занятий / краткое содержание	
13	Основы прочности.	
	Рассматриваемые вопросы:	
	- основные положения теории прочности и жесткости;	
	- силы внешние и внутренние;	
	- понятие о деформациях;	
	- понятие об упругом равновесии;	
	- напряжения;	
	- основные допущения сопромата.	
14	Экспериментальное испытание материалов.	
	Рассматриваемые вопросы:	
	- экспериментальное испытание материалов.	
15	Одноосное растяжение (сжатие).	
	Рассматриваемые вопросы:	
	- общие положения;	
	- напряжения в поперечных сечениях стержня;	
	- деформации и перемещения;	
	- закон Гука;	
	- построение эпюры продольной силы N;	
	- построение эпюры напряжений, напряжения в площадках, наклонных к поперечному сечению по	
	углом (в косых площадках);	
	- закон парности касательных напряжений;	
	- расчеты на прочность и жесткость при растяжении (сжатии).	
16	Геометрические характеристики сечений.	
	Рассматриваемые вопросы:	
	- общие положения;	
	- статический момент площади сечения относительно оси;	
	- примеры определения статического момента относительно оси;	
	- момент инерции сечения относительно оси и относительно центра;	
	- преобразование осевого момента инерции при параллельном переносе оси;	
	- примеры формул для вычислений геометрических характеристик.	
17	Напряженное состояние в точке.	
	Рассматриваемые вопросы:	
	- напряженное состояние в точке: одноосное;	
	- напряженное состояние в точке: плоское;	
	- напряженное состояние в точке: объемное.	
18	Изгиб балки.	
	Рассматриваемые вопросы:	
	- внутренние силовые факторы при изгибе;	
	- типы опор, балок, работающих на изгиб;	
	- определение опорных реакций;	
	- поперечная сила и изгибающий момент, эпюры;	
	- метод сечений.	
19	Расчеты на прочность соединений.	
	Рассматриваемые вопросы:	
	- контактные напряжения смятия;	
	- ядро сечения Внецентренное сжатие (растяжение).	
20	Чистый сдвиг.	
	Рассматриваемые вопросы:	
	- чистый сдвиг и его особенности.	
·		

No	T	
Π/Π	Тематика лекционных занятий / краткое содержание	
21	Кручение бруса (вала) с круглым и кольцевым поперечным сечениями.	
	Рассматриваемые вопросы:	
	- кручение бруса (вала) с круглыми и кольцевыми поперечными сечениями;	
	- допущения, построение эпюр крутящих моментов;	
	- напряжения, деформации в поперечном сечении;	
	- эпюры касательных напряжений, углов закручивания;	
	- особенности кручения бруса кольцевого поперечного сечения и тонкостенного бруса;	
	- условия прочности при кручении вала круглого и кольцевого поперечного сечения;	
	- расчеты на прочность и жесткость при кручении валов круглого и кольцевого поперечного	
	сечения.	
22	Эквивалентное напряжение.	
	Рассматриваемые вопросы:	
	- гипотезы прочности;	
	- пример расчета вала на изгиб с кручением.	
23	Прочность при циклически меняющихся нагрузках.	
	Рассматриваемые вопросы:	
	- критерии прочности и разрушения.	

4.2. Занятия семинарского типа.

Лабораторные работы

NC-		
№	Наименование лабораторных работ / краткое солержание	
Π/Π		
1	Группы Ассура в механизмах и их классификация.	
	В результате выполнения лабораторных работ рассматриваются трение в механизмах, явление	
	самоторможения.	
2	Исследование трения материалов.	
	В результате выполнения лаборатоных работ рассматриваются угловые скорости и ускорения при	
	вращательном движении материальной точки вокруг неподвижной оси.	
3	Кинетические пары и их классификация.	
	В результате выполнения лаборатоных работ рассматриваются избыточные связи, кинетическое	
	исследование механизмов (метод планов).	
4	Геометрические характеристики сечений.	
	В результате выполнения лаборатоных работ рассматриваются законы Ньютона и использование их	
	в механизмах.	
5	Коэффициент полезного действия механизма.	
	В результате выполнения лаборатоных работ рассматриваются мощность, работа силы тяжести,	
	коэффициент полезного действия механизма, общие теоремы динамики, количество движения и	
	импульс силы и кинетическая энергия движущейся материальной точки.	
6	Статическая и динамическая балансировка вращающихся звеньев механизмов.	
	В результате выполнения лаборатоных работ рассматриваются статическая и динамическая	
	балансировка вращающихся звеньев, механизмов.	
7	Испытание на кручение.	
	В результате выполнения лаборатоных работ рассматриваются чистый сдвиг и его особенности.	

Практические занятия

No		
	Тематика практических занятий/краткое содержание	
п/п		
1	Статика.	
	В результате выполнения практического задания рассматриваются статика.	
2	Кинематика.	
	В результате выполнения практического задания рассматриваются кинематика.	
3	Динамика.	
	В результате выполнения практического задания рассматриваются динамические законы.	
4	Задачи механики прочности.	
	В результате выполнения практического задания рассматриваются:	
	- значение курса для инженерного образования;	
	- основные положения теории прочности и жесткости;	
	- силы внешние и внутренние; - понятие о деформациях;	
	- понятие об упругом равновесии, напряжения, а также основные допущения сопромата.	
5	Испытания материалов. Механизм образования деформаций.	
J	В результате выполнения практического задания рассматриваются:	
	- экспериментальное испытание материалов.	
6	Растяжение (сжатие).	
U	В результате выполнения практического задания рассматриваются:	
	- одноосное растяжение (сжатие), общие положения;	
	- напряжения в поперечных сеченияхстержня;	
	- деформации и перемещения;	
	- закон Гука;	
	- построение эпюры продольной силы N, построение эпюры напряжений;	
	- напряжения в площадках, наклонных к поперечному сечению под углом (в косых площадках);	
	- закон парности касательных напряжений;	
	- расчеты на прочность и жесткость при растяжении (сжатии).	
7	Геометрические характеристики плоских сечений.	
	В результате выполнения практического задания рассматриваются:	
	- площадь сечения;	
	- статический момент площади сечения относительно оси, примеры определения статического	
	момента относительно оси;	
	 момент инерции сечения относительно оси и относительно центра; преобразование осевого момента инерции при параллельном переносе оси; 	
	- примеры формул для вычислений геометрических характеристик.	
8	Напряженное состояние в точке.	
U	В результате выполнения практического задания рассматриваются:	
	- напряженное состояние в точке: одноосное, плоское, объемное.	
9	Изгиб.Косой изгиб.	
_	В результате выполнения практического задания рассматриваются:	
	- сложный косой изгиб;	
	- внутренние силовые факторы при изгибе;	
	- типы опор, балок работающих на изгиб;	
	- поперечная сила и изгибающий момент, эпюры;	
	- определение опорных реакций.	
10	Внецентренное сжатие. (растяжение).	
	В результате выполнения практического задания рассматриваются:	
	- расчеты на прочность;	
	- контактные напряжения смятия;	
	- ядро сечения, внецентренное сжатие (растяжение).	

No	Тематика практических занятий/краткое содержание	
Π/Π		
11	Кручение.	
	В результате выполнения практического задания рассматриваются:	
	- кручение бруса (вала) с круглым и кольцевым поперечными сечениями;	
	- допущения;	
	- построение эпюр крутящих моментов;	
	- напряжения, деформации в поперечном сечении;	
	- эпюры касательных напряжений, углов закручивания;	
	- особенности кручения бруса кольцевого поперечного сечения и тонкостенного бруса;	
	- условия прочности при кручении вала круглого и кольцевого поперечного сечения;	
	- расчеты на прочность и жесткость при кручении валов круглого и кольцевого поперечного	
10	сечения.	
12	Гипотезы прочности.	
	В результате выполнения практического задания рассматриваются:	
	- эквивалентное напряжение;	
	- гипотезы прочности;	
10	- пример расчета вала на изгиб с кручением.	
13	Прочность при циклически меняющихся нагрузках. Критерии прочности и	
	разрушения.	
	В результате выполнения практического задания рассматриваются:	
	- прочность при циклически меняющихся нагрузках, критерии прочности и разрушения, общие	
	положения;	
	- основные характеристики цикла и предел выносливости; влияние конструктивных и	
	технологических факторов на предел выносливости; учет влияния концентрации напряжений,	
	шероховатости, масштабного коэффициента и др. на предел выносливости;	
	- критерии прочности и разрушения; наука о прочности и разрушении; прочность и сопротивление	
	разрушению; пластическое разрушение; хрупкое разрушение; усталостное разрушение; критерии	
	прочности и разрушения.	

4.3. Самостоятельная работа обучающихся.

	<u> </u>	
No	Вид самостоятельной работы	
Π/Π	Вид самостоятельной расоты	
1	Подготовка к практическим занятиям.	
2	Изучение дополнительной литературы.	
3	Выполнение курсовой работы.	
4	Выполнение расчетно-графической работы.	
5	Подготовка к промежуточной аттестации.	
6	Подготовка к текущему контролю.	
7	Выполнение курсовой работы.	
8	Выполнение расчетно-графической работы.	
9	Подготовка к промежуточной аттестации.	
10	Подготовка к текущему контролю.	

4.4. Примерный перечень тем видов работ

- 1. Примерный перечень тем расчетно-графических работ
- 1. Угловые скорости и ускорения при вращательном движении материальной точки вокруг неподвижной оси.
 - 2. Кинетические пары и их классификация.
 - 3. Силы инерции звеньев механизмов.
- 4. Статическая и динамическая балансировка вращающихся звеньев механизмов.
- 5. Работа и мощность. Работа силы тяжести. Коэффициент полезного действия механизма.

2. Примерный перечень тем курсовых работ

Курсовая работа включает в свой состав набор задач по разделам курса.

- 1. Растяжение (сжатие). Построение эпюр продольной силы, нормальных напряжений, деформаций. Подбор поперечного сечения стержня из условия его прочности и жесткости.
- 2. Изгиб. Построение эпюр изгибающего момента поперечной силы, норммальных напряжений, касательных напряжений. Подбор поперечного сечения балки из условия его прочности по нормальным напряжениям. Построение эпюр касательных напряжений в заданном сечении.
- 3. Кручение. Построение эпюр крутящего момента, касательных напряжений, углов закручивания. Подбор поперечного сечения вала из условия его прочности и жесткости.
- 4. Расчет вала на сложное сопротивление (внецентренное растяжение (сжатие) и изгиб с кручением) с применением 3-ей и 4-ой гипотез прочности.
 - 5. Зубчатое эвольвентное зацепение.

Предлагается 36 вариантов, которые различаются расчетными схемами, нагрузкой и геометрическими размерами.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Теория механизмов и механика машин	https://studizba.com/files/teoriya- mehanizmov-i-mashin-tmm/book/206632-
	Фролов К.В. Однотомное издание	
	Москва:Высш.шк., - 495 с., 1998	frolov-k.vi-drteorija-mehanizmov-i-
		m.html
2	Геометрический синтез зубчатых колес	https://library.miit.ru/bookscatalog/metod/01-
	внешнего зацепления со смещением	97743.pdf

	Щепетильников В.А., Солодилов В.Я.	
	Однотомное издание МИИТ, - 54 с., 2001	
3	Экспериментальное определение	https://studfile.net/preview/12033740/
	механических параметров звеньев	
	Самсаев Ю.А., Фирсова Т.Н. Учебное	
	пособие МИИТ, - 45 с., 1995	
4	Курсовое проектирование по теории	https://studizba.com/files/teoriya-
	механизмов и механике машин Попов	mehanizmov-i-mashin-tmm/book/3389-
	С.А., Тимофеев Г.А. Однотомное издание	popov-s.atimofeev-g.akursovoe-
	Москва: Высш.шк, - 352 с. , 1998	proekt.html
5	Кинематика зубчатых механизмов	https://library.miit.ru/bookscatalog/metod/00-
	Косачевская М.М., Кравченко Г.М.	69136.pdf
	Методические указания МИИТ, - 23 с.,	
	2001	
6	Избранные задачи и вопросы по	- URL:
	сопротивлению материалов Феодосьев	https://search.rsl.ru/ru/record/01001735674
	В.И., Книга Физматлит, - 365 с., 1996	
7	Сопротивление материалов Александров	https://urait.ru/book/soprotivlenie-
	А.В., Потапов В.Д., Державин Б.П.	materialov-v-2-ch-chast-2-562184
	Учебник Москва: Высшая школа, - 559 с.	
	, 2009	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Федеральный портал "Российское образование" http://www.edu.ru/;

Федеральный центр информационно-образовательных ресурсов (ФЦИОР) http://www.fcior.edu.ru/;

Федеральное хранилище "Единая коллекция цифровых образовательных ресурсов" http://school-collection.edu.ru/;

Электронно-библиотечная система Научно-технической библиотеки МИИТ http://library.miit.ru/;

Научно-электронная библиотека http://elibrary.ru/;

http://www.bibliofond.ru- некоммерческий информационный портал, в котором собрана коллекция книг, статей, научной литературы;

www.i-exam.ru – единый портал интернет тестирования (тесты для самообразования и контроля);

Поисковые системы: Yandex, Google, Mail.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения лекционных занятий используется специализированная лекционная аудитория с компьютером, проектором и экраном. Компьютер должен быть оснащен стандартными лицензионными программными продуктами и приложением Microsoft Office 2007 и выше.

Проведения лабораторных занятий включает применение демонстрационных материалов, представляемых с помощью плакатов и натурных объектов.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
 - Рабочее место преподавателя с персональным компьютером;
- Программное обеспечение для создания текстовых и графических документов, презентаций;
- Специализированная лекционная аудитория с мультимедиа аппаратурой;
- Специализированная аудитория для выполнения лабораторных работ, оснащенная лабораторными стендами, моделями механизмов, средствами и объектами измерений, оборудованная, рабочими столами.
 - 9. Форма промежуточной аттестации:

Зачет во 2, 3 семестрах.

Курсовая работа в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Машиноведение, проектирование, стандартизация и сертификация»

А.Б. Болотина

доцент, доцент, к.н. кафедры «Машиноведение, проектирование, стандартизация и сертификация»

А.И. Русинов

Согласовано:

Заведующий кафедрой МПСиС

В.А. Карпычев

Председатель учебно-методической комиссии

С.В. Володин