МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИТТСУ

П.Ф. Бестемьянов

10 сентября 2019 г.

Кафедра «Электропоезда и локомотивы»

Авторы Рыбников Евгений Константинович, к.т.н., профессор

Васильев Андрей Павлович, к.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Механическая часть электроподвижного состава

Специальность: 23.05.03 – Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

С.В. Володин

Квалификация выпускника: Инженер путей сообщения

Форма обучения: очная

Год начала подготовки 2017

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 1 06 сентября 2017 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 2 04 сентября 2017 г. Заведующий кафедрой

О.Е. Пудовиков

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления

университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: Заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 04.09.2017

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Дисциплина «Механическая часть электроподвижного состава» ставит своей целью изучение принципов работы и устройства механической части, условий работы её в эксплуатации, способов поддержания её работоспособности в эксплуатации, методик анализа причин возможных неисправностей. Механическая часть электрического подвижного состава является важной составляющей электромеханической системы, под которой понимается электровоз или электропоезд, объединяемых общим названием электроподвижной состав (э.п.с.). Устройства механической части в значительной степени определяют безопасность движения электрического подвижного состава его прочностные, виброзащитные и тяговые свойства.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Механическая часть электроподвижного состава" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Детали машин и основы конструирования:

Знания: знать современные программные средства для разработки проектно-конструкторской и технологической документации, методы оценки свойств конструкционных материалов, способы подбора материалов для проектируемых деталей машин и подвижного состав

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, современные программные средства для разработки проектно-конструкторской и технологической документации, разрабатывать кинематические схемы машин и механизмов, обосновывать выбор типовых передаточных механизмов к конкретным машина

Навыки: владеть методами оценки свойств конструкционных материалов, способами подбора материалов для проектируемых деталей машин и подвижного состава, основами расчета и проектирования элементов и устройств различных физических принципов действия, технологиями разработки конструкторской документации, эскизных, технических и рабочих проектов элементов подвижного состава и машин, нормативнотехнических документов с использованием компьютерных технологий

2.1.2. Динамика систем:

Знания: знать методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, динамику и прочность элементов подвижного состава

Умения: уметь применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность, проводить экспертизу и анализ прочностных и динамических характеристик подвижного состава, выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава

Навыки: владеть способностью применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества, способностью проводить экспертизу и анализ прочностных и динамических характеристик подвижного состава, способностью выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава

2.1.3. Инженерная компьютерная графика:

Знания: знать методы математического анализа и моделирования, теоретического и экспериментального исследования, современные программные средства для разработки проектно-конструкторской и технологической документации, принципы разработки

кинематических схем машин и механизмов, технологии разработки конструкторской документации, эскизных, технических и рабочих проектов элементов подвижного состава и машин, нормативно-технических документов с использованием компьютерных технологий

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, применять современные программные средства для разработки проектно-конструкторской и технологической документации, разрабатывать кинематические схемы машин и механизмов

Навыки: владеть способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования, способностью применять современные программные средства для разработки проектно-конструкторской и технологической документации, способностью разрабатывать кинематические схемы машин и механизмов, технологиями разработки конструкторской документации, эскизных, технических и рабочих проектов элементов подвижного состава и машин, нормативно-технических документов с использованием компьютерных технологий

2.1.4. Информатика:

Знания: знать основные методы, способы и средства получения, хранения и переработки информации, современные программные средства для разработки проектно-конструкторской и технологической документаци

Умения: уметь приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии, применять современные программные средства для разработки проектно-конструкторской и технологической документации

Навыки: владеть основными методами, способами и средствами получения, хранения и переработки информации, навыками работы с компьютером как средством управления информацией и автоматизированными системами управления базами данных

2.1.5. Математика:

Знания: знать методы математического анализа и моделирования, теоретического и экспериментального исследования, математические и статистические методы для оценки и анализа показателей безопасности и надежности подвижного состава

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии, использовать математические и статистические методы для оценки и анализа показателей безопасности и надежности подвижного состава

Навыки: владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения, способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования, способностью приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии, способностью использовать математические и статистические методы для оценки и анализа показателей безопасности и надежности подвижного состава, способностью выполнять математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований

2.1.6. Основы механики подвижного состава:

Знания: знать методы математического анализа и моделирования, теоретического и экспериментального исследования, методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность, выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям безопасности, выполнять расчеты динамики подвижного состава и термодинамический анализ теплотехнических устройств и кузовов подвижного состава

Навыки: владеть способностью применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность, способностью выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям безопасности, выполнять расчеты динамики подвижного состава и термодинамический анализ теплотехнических устройств и кузовов подвижного состава, способностью выполнять математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований, способностью составлять описания проводимых исследований и разрабатываемых проектов, собирать данные для составления отчетов, обзоров и другой технической документации

2.1.7. Сопротивление материалов:

Знания: знать методы математического анализа и моделирования, теоретического и экспериментального исследования, методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность, методы оценки свойств конструкционных материалов, способами подбора материалов для проектируемых деталей машин и подвижного состава

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность, выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям безопасности, выполнять расчеты динамики подвижного состава и термодинамический анализ теплотехнических устройств и кузовов подвижного состава

Навыки: владеть методами оценки свойств конструкционных материалов, способами подбора материалов для проектируемых деталей машин и подвижного состава, основами расчета и проектирования элементов и устройств различных физических принципов действия, способностью выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные

требования к показателям безопасности, выполнять расчеты динамики подвижного состава и термодинамический анализ теплотехнических устройств и кузовов подвижного состава

2.1.8. Теоретическая механика:

Знания: знать методы математического анализа и моделирования, теоретического и экспериментального исследования, методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность

Навыки: владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения, способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования, способностью применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность

2.1.9. Теория механизмов и машин:

Знания: знать основы расчета и проектирования элементов и устройств различных физических принципов действия, методы математического анализа и моделирования, теоретического и экспериментального исследования

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования, разрабатывать кинематические схемы машин и механизмов, определять параметры их силовых приводов, подбирать электрические машины для типовых механизмов и машин, обосновывать выбор типовых передаточных механизмов к конкретным машинам

Навыки: владеть основами механики и методами выбора мощности, элементной базы и режима работы электропривода технологических установок, технологиями разработки конструкторской документации, эскизных, технических и рабочих проектов элементов подвижного состава и машин, нормативно-технических документов с использованием компьютерных технологий

2.1.10. Техническая диагностика подвижного состава:

Знания: знать методы и способы обнаружения неисправностей подвижного состава в эксплуатации, определения качества проведения технического обслуживания подвижного состава, методы расчета показателей качества

Умения: уметь применять методы и средства технических измерений, технические регламенты, стандарты и другие нормативные документы при технической диагностике подвижного состава, разрабатывать методы технического контроля и испытания продукции, осуществлять диагностику и освидетельствование технического состояния подвижного состава и его частей, надзор за их безопасной эксплуатацией, разрабатывать и оформлять ремонтную документацию

Навыки: владеть нормативными документами открытого акционерного общества «Российские железные дороги» по ремонту и техническому обслуживанию подвижного состава, современными методами и способами обнаружения неисправностей подвижного состава в эксплуатации, определения качества проведения технического обслуживания подвижного состава, владением методами расчета показателей качества

2.1.11. Технология механосборочного производства:

Знания: знать технологические процессы производства и ремонта подвижного состава, маршрутные карты, карты технического уровня, инструкции

Умения: уметь разрабатывать и внедрять технологические процессы производства и ремонта подвижного состава, маршрутные карты, карты технического уровня, инструкции, выявлять причины отказов и брака, некачественного производства и ремонта подвижного состава и его узлов, способностью обосновывать правильность выбора необходимого оборудования и средств технического оснащения

Навыки: владеть способностью разрабатывать и внедрять технологические процессы производства и ремонта подвижного состава, маршрутные карты, карты технического уровня, инструкции, выявлять причины отказов и брака, некачественного производства и ремонта подвижного состава и его узлов, способностью обосновывать правильность выбора необходимого оборудования и средств технического оснащения, изучать и распространять передовой опыт, способностью осуществлять приемку объектов после производства ремонта

2.1.12. Физика:

Знания: знать методы математического анализа и моделирования, теоретического и экспериментального исследования, современную физическую картину мира и эволюции Вселенной, пространственно-временные закономерности, строение вещества

Умения: уметь применять методы математического анализа и моделирования, теоретического и экспериментального исследования

Навыки: владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения, способностью применять методы математического анализа и моделирования, теоретического и экспериментального исследования, способностью использовать знания о современной физической картине мира и эволюции Вселенной, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Государственная итоговая аттестация

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОПК-7 способностью применять методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел, исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность;	Знать и понимать: методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел Уметь: исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность
	его динамические качества и оезопасность,	Владеть: методами анализа и расчёта деталей узлов механической части, в том числе с применением современных компьютерных технологий;
2	ПК-19 способностью выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям безопасности, выполнять расчеты динамики	Знать и понимать: методы расчета и оценки прочности сооружений и конструкций на основе знаний законов статики и динамики твердых тел Уметь: исследовать динамику и прочность элементов подвижного состава, оценивать его динамические качества и безопасность
	подвижного состава и термодинамический анализ теплотехнических устройств и кузовов подвижного состава;	Владеть: етодами анализа и расчёта деталей узлов механической части, в том числе с применением современных компьютерных технологий;
3	ПСК-3.2 способностью демонстрировать знания механической части электроподвижного состава, разрабатывать технологическую документацию по производству и ремонту оборудования электроподвижного состава, владением методами анализа и расчета деталей узлов механической части, в том числе с применением современных компьютерных технологий, методами анализа причин возникновения неисправностей и разработки проектов модернизации отдельных узлов в соответствии с требованиями по	Знать и понимать: устройство узлов механической части подвижного состава, их конструктивные особенности. Уметь: выполнять расчеты типовых элементов технологических машин и подвижного состава на прочность, жесткость и устойчивость, оценить динамические силы, действующие на детали и узлы подвижного состава, формировать нормативные требования к показателям безопасности, выполнять расчеты динамики подвижного состава и устройств оборудования подвижного состава.
	обслуживанию и ремонту таких узлов.	Владеть: методами анализа причин возникновения неисправностей и разработки проектов модернизации отдельных узлов в соответствии с требованиями по обслуживанию и ремонту таких узлов.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

5 зачетных единиц (180 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

Количество часо			
Вид учебной работы	Всего по учебному плану	Семестр 8	Семестр 9
Контактная работа	102	66,15	36,15
Аудиторные занятия (всего):	102	66	36
В том числе:			
лекции (Л)	52	34	18
практические (ПЗ) и семинарские (С)	34	16	18
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	16	16	0
Самостоятельная работа (всего)	51	42	9
Экзамен (при наличии)	27	0	27
ОБЩАЯ трудоемкость дисциплины, часы:	180	108	72
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	5.0	3.0	2.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КП (1), ПК1, ПК2	ПК1, ПК2	КП (1), ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	3Ч, ЭК	34	ЭК

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

						еятельност терактивно			Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
1	8	Тема 1 Место тягового привода в общей системе ходовой части ЭПС	2/1					2/1	
2	8	Тема 2 Кинематические схемы тяговых приводов ЭПС	4	6/4	2/2		5	17/6	
3	8	Тема 3 Причина возникновения динамических нагрузок в тяговой передаче	2	8/2			4	14/2	
4	8	Тема 4 Критерии и показатели кинематического совершенства тягового привода	4/2		4/2		3	11/4	
5	8	Тема 5 Разделение тяговых приводов с точки зрения динамического совершенства на три класса	2		2/2		3	7/2	
6	8	Тема 6 Научная классификация схем тяговых приводов	2				3	5	
7	8	Тема 7 Нагрузки тяговых приводов, передач и причины увеличения нагрузок в эксплуатации, методы их снижения	2		4		5	11	ПК1
8	8	Тема 8 Нагрузки на элементы передачи и раму тележки от сил тяги и торможения	2		2		3	7	
9	8	Тема 9 Конструкторские решения для	2				3	5	

							ти в часах/		Формы
№	Семестр	Тема (раздел) учебной		В ТОМ	числе инт	ерактивно	ой форме		текущего контроля успеваемости и
п/п	Сем	дисциплины	П	JIP	ПЗ/ТП	KCP	CP	Всего	промежу- точной
1	2	3	4	5	6	7	8	9	аттестации 10
1	2	уменьшения кинематического несовершенства	-	3	0	,	0		10
		схемы тяговых приводов							
10	8	Тема 10 Динамические нагрузки в тяговом приводе при вынужденных колебаниях экипажа	2				4	6	
11	8	Тема 11 Особенности конструкции и эксплуатации тягового редуктора как узла тяговой передачи	4/2				3	7/2	ПК2
12	8	Тема 12 Конструкции тяговых муфт, требования, их классификация	4/1		2		3	9/1	3Ч
13	8	Тема 13 Современные тенденции в конструировании тяговых передач ЭПС	2	2			3	7	
14	9	Тема 14 Принципы, положенные в основу схем рессорного подвешивания	2/2		2/2		1	5/4	
15	9	Тема 15 Анализ характеристик элементов рессорного подвешивания и их изменений в процессе эксплуатации	4		2/2		2	8/2	
16	9	Тема 16 Расчеты упругих и диссипативных элементов рессорного подвешивания	2		2/2			4/2	ПК1
17	9	Тема 17 Диссипативные элементы	2/2		2/2		1	5/4	

						еятельност			Формы
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Ц	e ion	ПЗ/ГП	ерактивно СБ Д	Э Э	Всего	текущего контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		рессорного подвешивания и их характеристики							
18	9	Тема 18 Узлы соединения колесных пар с рамой тележки (буксовое рессорное подвешивание)	2		2/2		1	5/2	
19	9	Тема 19 Узлы соединения кузова с тележками (кузовное рессорное подвешивание)	2		2		1	5	ПК2
20	9	Тема 20 Системы передачи сил тяги и торможения и их взаимодействие с рессорным подвешиванием	2		4/2			6/2	
21	9	Тема 21 Конструкции рессорного подвешивания скоростного и высокоскоростного подвижного состава	2/2	16/6	24/10		3	34/2	КП, ЭК
22		Всего:	52/12	16/6	34/18		51	180/36	

4.4. Лабораторные работы / практические занятия

Лабораторные работы предусмотрены в объеме 16 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	8	Тема: Кинематические схемы тяговых приводов ЭПС	Конструкции механической части тяговых приводов отечественного ЭПС	2/2
2	8	Тема: Кинематические схемы тяговых приводов ЭПС	Конструкции механической части тяговых приводов отечественного ЭПС	2/2
3	8	Тема: Кинематические схемы тяговых приводов ЭПС	Конструкции механической части тяговых приводов зарубежного ЭПС	4/2
4	8	Тема: Кинематические схемы тяговых приводов ЭПС	Конструкции механической части тяговых приводов зарубежного ЭПС	4/2
5	8	Тема: Причина возникновения динамических нагрузок в тяговой передаче	Математическая модель механической части тяговых приводов ЭПС	2/2
6	8	Тема: Причина возникновения динамических нагрузок в тяговой передаче	Динамические нагрузки тягового привода класса I	2
7	8	Тема: Причина возникновения динамических нагрузок в тяговой передаче	Динамические нагрузки тягового привода класса II	2
8	8	Тема: Причина возникновения динамических нагрузок в тяговой передаче	Динамические нагрузки тягового привода класса III	2
9	8	Тема: Современные тенденции в конструировании тяговых передач ЭПС	Изучение конструкций моторных тележек ЭПС	2
			ВСЕГО:	22/10

Практические занятия предусмотрены в объеме 34 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	8		Кинематические схемы тяговых приводов ЭПС	2/2
2	8		Критерии и показатели кинематического совершенства тягового привода	4 / 2

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
3	8		Разделение тяговых приводов с точки зрения динамического совершенства на три класса	2/2
4	8		Нагрузки тяговых приводов, передач и причины увеличения нагрузок в эксплуатации, методы их снижения	4
5	8		Нагрузки на элементы передачи и раму тележки от сил тяги и торможения	2
6	8		Конструкции тяговых муфт, требования, их классификация	2
7	9		Принципы, положенные в основу схем рессорного подвешивания	2/2
8	9		Анализ характеристик элементов рессорного подвешивания и их изменений в процессе эксплуатации	2/2
9	9		Расчеты упругих и диссипативных элементов рессорного подвешивания	2/2
10	9		Диссипативные элементы рессорного подвешивания и их характеристики	2/2
11	9		Узлы соединения колесных пар с рамой тележки (буксовое рессорное подвешивание)	2/2
12	9		Узлы соединения кузова с тележками (кузовное рессорное подвешивание)	2
13	9		Системы передачи сил тяги и торможения и их взаимодействие с рессорным подвешиванием	4 / 2
14	9		Конструкции рессорного подвешивания скоростного и высокоскоростного подвижного состава	2
	1		ВСЕГО:	34/18

4.5. Примерная тематика курсовых проектов (работ)

Выполняется курсовой проект на тему: «Проектирование рессорного подвешивания электроподвижного состава».

Работа предусматривает выполнение следующих этапов:

- 1. Выбор кинематической схемы рессорного подвешивания исходя из заданных требований.
- 2. Составление эскиза расположения упругих элементов и составление перечня их типов, материалов, габаритов.
- 3. Корректировка расположения и габаритных размеров упругих элементов с учётом расположения устройства передачи силы тяги.

- 4. Расчёты параметров упругих элементов, расчёты их на прочность, определение параметров демпфирования.
- 5. Проверка рассчитанных элементов рессорного подвешивания по допустимым напряжениям.
- 8. Выводы.
- 9. Список литературы

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Виды образовательных технологий:

Традиционные технологии (объяснительно-иллюстративные) – (ТТ)

Интерактивные технологии (диалоговые) – (ДТ)

Интерактивные формы обучения должны составлять не менее 30% от аудиторных часов.

Интерактивные формы обучения – лекционные занятия (проблемная лекция, видео лекция, мультимедиа лекция, разбор и анализ конкретной ситуации, компьютерная симуляция, мозговой штурм, презентация и др.)

Интерактивные формы обучения – практические занятия (ролевая игра, деловая игра, разбор и анализ конкретной ситуации, тренинг)

При реализации программы дисциплины «Механическая часть электроподвижного состава» раздел: "Механическая часть тягового привода ЭПС" проводятся занятия с использованием традиционной технологии (32ч) и интерактивной технологии (2ч.). Практические занятия проводятся с применением традиционной (14 ч.) и интерактивной технологии (2 ч.) - презентация, лабораторные занятия проводятся по традиционной форме (16 ч.).

В разделе «Системы рессорного подвешивания» используются различные образовательные технологии. Лекции проводятся с использованием традиционных технологий (18 ч.) – проблемная лекция, разбор и анализ конкретных ситуаций. Практические занятия проводятся с применением традиционных (6 ч.) и интерактивных технологий (12 ч.) – компьютерные симуляции, моделирование.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	8		Кинематические схемы тяговых приводов ЭПС	5
2	8		Причина возникновения динамических нагрузок в тяговой передаче	4
3	8		Критерии и показатели кинематического совершенства тягового привода	3
4	8		Разделение тяговых приводов с точки зрения динамического совершенства на три класса	3
5	8		Научная классификация схем тяговых приводов	3
6	8		Нагрузки тяговых приводов, передач и причины увеличения нагрузок в эксплуатации, методы их снижения	5
7	8		Нагрузки на элементы передачи и раму тележки от сил тяги и торможения	3
8	8		Конструкторские решения для уменьшения кинематического несовершенства схемы тяговых приводов	3
9	8		Динамические нагрузки в тяговом приводе при вынужденных колебаниях экипажа	4
10	8		Особенности конструкции и эксплуатации тягового редуктора как узла тяговой передачи	3
11	8		Конструкции тяговых муфт, требования, их классификация	3
12	8		Современные тенденции в конструировании тяговых передач ЭПС	3
13	9		Принципы, положенные в основу схем рессорного подвешивания	1
14	9		Анализ характеристик элементов рессорного подвешивания и их изменений в процессе эксплуатации	2
15	9		Диссипативные элементы рессорного подвешивания и их характеристики	1
16	9		Узлы соединения колесных пар с рамой тележки (буксовое рессорное подвешивание)	1
17	9		Узлы соединения кузова с тележками	1

		(кузовное рессорное подвешивание)	
18	9	Конструкции рессорного подвешивания скоростного и высокоскоростного подвижного состава	3
	•	ВСЕГО:	51

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Тяговые передачи	Бирюков Иван	Транспорт, 1986	Все разделы
	электроподвижного состава	Вячеславович; Беляев	НТБ (уч.3); НТБ	
	железных дорог	Анатолий Ильич;	(уч.6); НТБ (фб.);	
		Рыбников Евгений	НТБ (чз.1)	
		Константинович	, ,	
2	Механическая часть тягового	Под ред. И.В. Бирюкова	Альянс, 2013	Все разделы
	подвижного состава		НТБ МИИТа	1
3	Методические указания для	Крушев Стамат	МИИТ, 2004	Все разделы
	выполнения курсового	Димитриевич; Савоськин	НТБ (уч.3); НТБ	1 / 1
	проекта и курсовой работы по	Анатолий Николаевич;	(фб.); НТБ (чз.2)	
	дисциплине "Динамика	Сердобинцев Евгений		
	электроподвижного состава"	Васильевич		

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
4	Методические указания для выполнения лабораторных работ по дисциплине «Механическая часть ЭПС», раздел «Механическая часть тягового привода ЭПС»	Рыбников Е.К.	МИИТ, 1996 НТБ МИИТа	Все разделы
5	Методическое пособие к практическим занятиям по дисциплине «Механическая часть ЭПС», раздел «Механическая часть тягового привода ЭПС», «Компоновка узлов тягового привода ЭПС»	Рыбников Е.К., Володин С.В., Крушев С.Д., Васильев А.П.	МИИТ, 2012 НТБ МИИТа	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. Izmerov.narod.ru/privod/index.html (История тягового привода.)
- 2. www.gmt-gmbh.de (Каталоги по резинометаллическим элементам для подвижного состава).
- 3. Сайт MSC: http://www.mscsoftware.com/ (скачивание учебных студенческих версий программных продуктов для прочностных и динамических расчетов деталей и узлов машин)
- 4. http://instructionsrzd.ucoz.ru/ (литература железнодорожной тематики)

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

При изучении дисциплины используются следующие информационные технологии:

- мультимедийные пособия (на CD-дисках) при изучении конструкций механической части ЭПС;
- электронные копии инструкционных книг с описанием различного ЭПС;
- программное обеспечение: лицензионные стандартные средства Microsoft Office, математический пакет MathCad, программные пакеты для моделирований движения железнодорожных экипажей по рельсовому пути ADAMS, UM, Vi-Rail или авторские программы аналогичного назначения.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Лекционная аудитория, оснащенная компьютером для преподавателя, видеопроектором и экраном.

Аудитория для лабораторных и практических работ, оснащенная компьютерами для каждого студента с предустановленным программным обеспечением для моделирования движения железнодорожных экипажей по рельсовому пути. Видеопроектор и экран.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

При изучении дисциплины в первом разделе курса предусмотрены практические и лабораторные работы, которые предназначены для получения студентами соответствующих компетенций.

При выполнении лабораторных работ студент должен изучить конструкции отечественных и зарубежных тяговых приводов (лаб. Раб.№1 и №2). Для этого используются мультимедийные пособия (на CD-дисках) и книги с описанием конструкций ЭПС. CD-диски выдаются студентам для самостоятельного повторения и закрепления материала.

При изучении конструкций должен уметь переходить от конструкций к компоновочным схемам тяговых приводов, которые рассматриваются в лекционном курсе. Следующие четыре лабораторные работы в соответствии с компетенцией ПК-33 предназначены для развития у студента навыков составления расчетных схем тяговых

предназначены для развития у студента навыков составления расчетных схем тяговых приводов, выполнения динамических расчетов и анализа полученных результатов по методике и показателям, которые были представлены в лекционном курсе.

В отчете о выполнении лабораторной работе должно быть заключение, в котором должно быть отражено следующее:

- 1. Цель работы и поставленные задачи, например, исследовать влияние заданного параметра на динамические нагрузки в приводе и т.п.
- 2. Краткое описание расчетной модели и принятые допущения.
- 3. Результаты заданного исследования и выводы по результатам исследования.
- 4. Дать описание возможных неисправностей в эксплуатации при изменении исследуемого параметра.

При выполнении лабораторной работы студент также знакомится с методами динамических расчетов с применением современных компьютерных технологий. Практические занятия предназначены для развития навыков выполнения проектировочных работ в условиях габаритных ограничений, диктуемых Нормами проектирования и Правилами технической эксплуатации подвижного состава (ПТЭ). По выданному каждому студенту индивидуальному заданию (см. Приложение) производится выполнение ряда расчетов в рамках эскизного проекта. Студенты частично выполняют расчеты на практических занятиях и продолжают работу самостоятельно дома в часы самостоятельной работы. По результатам практических занятий и выполнения самостоятельной работы выполняется отчет о выполненной домашней работе, которая

защищается студентом.

В отчете о выполненной домашней работе (раздел 1) должны быть следующие разделы: Введение (описание принятого технического решения на основании заданных исходных данных, краткое описание конструктивных узлов тягового привода).

Расчеты:

- 1. Расчет максимального диаметра большого зубчатого колеса.
- 2. Расчет передаточного числа зубчатой передачи.
- 3. Составление расчетной схемы тележки по результатам компоновки тягового привода.
- 4. Расчет нагрузок, действующих на раму тележки в различных режимах движения.
- 5. Расчет перемещений центра масс рамы тележки.
- 6. Расчет расцентровки валов двигателя и редуктора, выбор типа тяговой муфты или расчет относительного перемещения точек подвешивания тягового двигателя к раме тележки.
- 7. Проектирование резинометаллического амортизатора в подвеске двигателя или редуктора.
- 8. Эскиз или схема устройства безопасности, предотвращающего тяговый двигатель или редуктор от падения на путь.

Заключение (по пунктам 2, 6, 7 и 8)

В отчете о выполненной домашней работе (раздел 2) должны быть следующие разделы: Введение (описание рассматриваемой задачи и подходов к ее решению) Расчеты:

- 1. Расчет инерционных и геометрических параметров экипажа.
- 2. Расчет параметров упруго-вязких связей ЭПС с одной ступенью рессорного подвешивания. Построение на ПЭВМ амплитудно-частотной характеристики вертикальных ускорения исследуемой массы.
- 3. Расчет параметров упруго-вязких связей ЭПС с двумя ступенями рессорного подвешивания (двухмассовая модель). Построение на ПЭВМ амплитудно-частотных характеристик вертикальных ускорений тележек и кузова
- 4. Расчет параметров упруго-вязких связей ЭПС с независимым рессорным подвешиванием тележек и кузова (двухмассовая модель). Построение на ПЭВМ амплитудно-частотных характеристик вертикальных ускорений тележек и кузова
- 5. Расчет параметров упруго-вязких связей ЭПС с двумя ступенями рессорного подвешивания тележек и кузова, и с дополнительным рессорным подвешиванием тяговых двигателей. Построение на ПЭВМ амплитудно-частотных характеристик вертикальных ускорений двигателей, тележек и кузова.
- 6. Анализ результатов расчета вертикальных колебаний ЭПС при различных схемах подвешивания основных масс.
- 7. Подготовка материала для подтверждения или опровержения принципа разделения масс (по пунктам 2, 3, 4 и 5).

При выполнении самостоятельной работы используются методические пособия указанные в 7.2