МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Механическая часть электроподвижного состава

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 16.09.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины "Механическая часть электроподвижного состава" являются:

- изучить принципы работы и устройства механической части, условий работы её в эксплуатации, способы поддержания ее работоспособности в эксплуатации;
- изучить методики анализа причин возможных неисправностей механической части электроподвижного состава.

Задачей освоения учебной дисциплины "Механическая часть электроподвижного состава" является:

- освоение механической части электрического подвижного состава, являющейся важной составляющей электромеханической системы, под которой понимается электровоз или электропоезд, объединяемых общим названием электроподвижной состав (э.п.с.).
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем тягового подвижного состава.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Знать условия работы отдельных узлов механической части ЭПС в целом; особенности нагружения и показатели качества узлов; современные направления совершенствования их конструкции и способы поддержания их работоспособности в эксплуатации; иметь представление о современных методах испытаний, прочностных расчётах деталей и узлов механической части ЭПС

Уметь:

Уметь устанавливать причины возникновения неисправностей механической части, выполнять, в том числе и с применением персональных ЭВМ, расчёты по прочности механической части, разрабатывать проекты модернизации отдельных узлов в соответствии с существующими требованиями по обслуживанию и ремонту таких узлов

Владеть:

Владеть навыком выполнять обоснование параметров конструкций и систем тягового подвижного состава. Владеть навыками применения типовых расчетных методов обоснования параметров тягового подвижного состава. Владеть навыками применения типовых расчетных методов обоснования параметров эксплуатации тягового подвижного состава

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 7 з.е. (252 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№8	№9	
Контактная работа при проведении учебных занятий (всего):	128	64	64	
В том числе:				
Занятия лекционного типа		32	32	
Занятия семинарского типа	64	32	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 124 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

3.0	T		
No	Тематика лекционных занятий / краткое содержание		
п/п			
1			
Ознакомление с ГОСТом 50056–2012. Место тягового привода (ТП)в системе. Требования к ТП			
	системе. Требования к ТП		
2	Схемы компоновок тяговых приводов ЭПС, отличающиеся местом расположения		
	тягового привода и редуктора		
_	Схемы тяговых приводов, их достоинства и недостатки		
3	Схемы компоновок тяговых приводов ЭПС, отличающиеся длиной промежуточного		
	вала муфты		
	Схемы тяговых приводов, их достоинства и недостатки.		
4	Динамические свойства индивидуальных тяговых приводов с разомкнутой		
	кинематической цепью передачи тягового момента		
	Рассмотрение двух схем передачи тягового момента на колесную		
	пару.		
5	Переменное передаточное отношение редуктора, вывод формулы и ее анализ		
	Причины изменения передаточного отношения, построение плана		
	скоростей редуктора и вывод формулы.		
6	Формулы динамических моментов на валу тягового двигателя и влияние		
	кинематических параметров на величину моментов		
	Вывод формул динамического момента и анализ влияния		
7	параметров передачи на величины динамических моментов.		
/	Схемы компоновок тяговых приводов ЭПС, отличающиеся числом параллельных		
	кинематических цепей		
	Анализ динамических нагрузок на оси колесных пар при двух схемах передачи тяговых моментов на колесную пару.		
8	Классификация тяговых муфт. Классификация тяговых приводов по их		
0	динамическим качествам		
	Понятие «тяговая муфта», условия ее работы, расцентровка валов и		
	влияние на схему муфты.		
9	Квазистатические нагрузки тяговых передач.		
	Расчеты нагрузок на элементы тяговых приводов.		
10	Методы снижения динамических нагрузок в кинематических цепях тягового привода		
	Анализ кинематических и динамических методов уменьшения		
	динамических (паразитных)нагрузок в кинематической цепи ТП.		
11	Расчеты максимальных величин динамических показателей тягового привода		
	Вывод формул для расчета ускорений на элементах ТП,		
	динамического момента сил в ТП, расцентровки муфты.		
12	Износ и нагрузки зубчатых передач. Динамика зубчатых передач		
	Характеристика железнодорожных зубчатых передач, их износ, влияние величины износа на		
	надежность ТП.		
13	Безредукторный тяговый электрический привод		
4.4	Рассмотрение существующих конструкций и анализ требований к конструкции привода		
14	Анализ характеристик упругих и упругодиссипативных и диссипативных элементов		
	рессорного подвешивания и расчет их конструкций		
	Винтовые пружины. Торсионы (конструкция; выбор геометрических параметров; определение		
1.5	жесткости; расчет на прочность).		
15	Листовые рессоры.		

№	
п/п	Тематика лекционных занятий / краткое содержание
	конструкция; выбор геометрических параметров; определение жесткости; расчет на прочность, работа сил трения
16	Резиновые и резинометаллические упругие элементы
	Типы; конструкция; области применения, расчет твердости по Шору, модули упругости при статической и динамической нагрузках.
17	Резиновые пластины прямоугольного сечения, работающие на сжатие.
	Резинометаллические упругие элементы, выполненные в виде круговых шайб,
	работающие на сжатие Типы; конструкция; выбор геометрических параметров; определение жесткости; расчет на прочность.
18	Резинометаллические упругие элементы, выполненные в виде круговых шайб,
10	работающие на сдвиг, кручение, изгиб. Расчет резинового конуса.
	Типы; конструкция; выбор геометрических параметров; определение жесткости; расчет на прочность.
10	
19	Пневморессоры
	Типы; конструкция; геометрические параметры; определение жесткости при вертикальной статической нагрузке; определение жесткости при динамической нагрузке; постоянная времени;
	геометрические характеристики дросселей; механоматематические модели пневморессор.
20	Гасители колебаний. Гидравлический гаситель.
20	Назначение; типы; конструкция; принцип действия; диссипативная сила гасителя; коэффициент
	демпфирования; динамическая жесткость гасителя; зависимости диссипативной силы гасителя от
	мгновенного значения деформации при колебаниях с заданными амплитудой и частотой; силовая
	характеристика гасителя; параллельное включение пружины и гидравлического гасителя; зависимость
	силы реакции схемы параллельного включения от деформации; рабочая индикаторная диаграмма
	гидравлического гасителя колебаний; работа диссипативной силы за период колебаний; графики
	вещественной, мнимой, амплитудной и фазовой частотных характеристик гасителя;
	упругозащищенный гидравлический гаситель.
21	Фрикционный гаситель колебаний
	Назначение; типы; конструкция; принцип действия; сила трения фрикционного гасителя; изменения
	силы трения фрикционного гасителя колебаний при периодическом перемещении рамы тележки
	относительно буксы; силовая характеристика фрикционного гасителя; коэффициент затухания
	гидравлического гасителя, эквивалентного фрикционному по рассеянной энергии колебаний;
	параллельное включение пружины и фрикционного гасителя: диаграммы работы и силовая характеристика.
22	Гидрофедеры
	Назначение; типы; конструкция; принцип действия; динамическая жесткость гидрофедера,
	применение гидрофедеров на отечественном э.п.с., преимущества и недостатки гидрофедеров.
23	Примеры конструкций резинометаллических элементов, применяемых на подвижном
	составе.
	Опорные резинометаллические элементы: опоры с прямоугольным переменным сечением; опоры с
	круглым поперечным сечением; резинометаллический элемент типа «Песочные часы» и «Половина
	песочных часов»; резинометаллические шарниры и шевронные элементы.
24	Узлы соединения колесных пар с рамой тележки (буксовое рессорное
	подвешивание).
	Назначение, требования, предъявляемые к узлам связи колесных пар с рамой тележки, основные
	элементы буксового узла
25	Буксовый узел с плоскими направляющими и варианты его модернизации. Буксовый
	узел с шарнирно-поводковым механизмом. Буксовый узел с пластинчатыми
	поводками . Буксовый узел с рычажным механизмом.
	Назначение; типы; конструкция; принцип действия.

№ π/π	Тематика лекционных занятий / краткое содержание
26	Узлы соединения кузова с тележками.
20	Требования, предъявляемые к узлам связи кузова с тележками; классификация узлов соединения
	кузова с тележкой.
27	Узел соединения с жесткой плоской цилиндрической опорой.
	Назначение; конструкция; принцип действия, определение момента трения в опоре; дополнительные
	опоры и их назначение, работа узла при возникновении опрокидывающего момента; преимущества и
	недостатки узла.
28	Узлы соединения с маятниковыми опорами.
	Назначение; конструкция; принцип действия; расчет возвращающей силы, создаваемой опорой; расчет
	жесткости опоры в поперечном направлении; гравитационная жесткость маятниковой опоры;
	передача сил тяги и торможения через опору; кинематические схемы возвращающих устройств с
	предварительным натягом пружин, силовая характеристика устройств; силовая характеристика возвращающих устройств при появлении зазоров; дополнительные боковые качающиеся и скользящие
	опоры; преимущества и недостатки узла.
29	Шкворневые связи с пружинным поперечным возвращающим устройством и
	скользунами.
	Назначение; конструкция; принцип действия; кинематические схемы упругих возвращающих
	устройств с предварительным сжатием и их силовые характеристики; преимущества и недостатки
	узла.
30	Шкворневые связи с люлечными устройствами и скользунами.
	Назначение; конструкция; принцип действия; схема узла соединения с центральной сферической
	опорой; схемы узлов связи кузова с тележкой с опиранием на скользуны; конструкция кузовной
	ступени подвешивания, совмещающая в одном многоцелевом узле функции люльки и упругого
31	элемента вертикальной связи; преимущества и недостатки узла.
31	Связи с многоцелевым использованием пружин. Назначение; конструкция; принцип действия; система пружинного подвешивания «Флексикойл»;
	преимущества и недостатки узла.
32	Особенности конструкции ленкерных устройств и продольных тяг, предназначенных
32	для передачи продольных сил
	Назначение; конструкция; принцип действия; работа ленкерных устройств при передаче продольных и
	поперечных сил; особенности конструкции наклонных тяг при передаче продольных сил от тележек к
	кузову.

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Изучение устройства тяговых приводов грузовых электровозов
	Тяговый привод с двухсторонней зубчатой передачей и односторонней. Основные неисправности при эксплуатации тяговых приводов.
2	Изучение устройства тяговых приводов пассажирских электровозов
	Тяговый привод класса ІІ, конструкции тяговых муфт и подвешивания тяговых двигателей.
3	Изучение устройства тяговых приводов моторвагонного подвижного состава
	Тяговый привод пригородных электропоездов и скоростных электропоездов. Конструкции тяговых
	приводов, требования к обслуживанию тяговых приводов в процессе эксплуатации.
4	Изучение устройства тяговых приводов электропоезда ЭГ2Тв и трамваев
	Особенности конструкции тягового привода электропоезда ЭГ2Тв

№ п/п	Наименование лабораторных работ / краткое содержание
	с полу подрессоренной моноблочной конструкцией. Конструкция тягового привода трамвая «Витязь»
5	Конструкции тяговых приводов с муфтами поперечной и продольной компенсации
	Сравнительный анализ тяговых муфт с примерами применения на электровозах и электропоездах.
6	Конструкции тяговых приводов скоростных электропоездов
	Особенности тяговых приводов скоростных электропоездов «Ласточка», ЭР200 и высокоскоростных
	электропоездов «Сапсан», «Сокол-250»
7	Конструкции тяговых приводов вагонов метрополитена
	Особенности эксплуатации вагонов метрополитена и конструктивные особенности тяговых приводов
	электропоездов 81-714, 81-720,81-740, 81-760,81-765,81-775 (москва-2020).

Практические занятия

	прикти теские запитии
№ п/п	Тематика практических занятий/краткое содержание
1	Компоновка тягового привода Расположение тягового привода в габаритах рамы тележки и оси колесной пары.
2	Расчет максимального диаметра большого зубчатого колеса
	Определение диаметра БЗК с учетов ограничений по габаритам.
3	Расчет передаточного числа зубчатой передачи
	Проектирование одноступенчатой зубчатой передачи, определение централи вычисление передаточного числа.
4	Составление расчетной схемы тележки по результатам компоновки тягового привода Разработка эскиза тележки и определение основных размеров необходимых для выполнения последующих расчетов.
5	Расчет нагрузок, действующих на раму тележки в различных режимах движения экипажа
	Вычисление сил и моментов сил при реализации тяговых сил предельных по сцеплению.
6	Расчет перемещений центра масс рамы тележки
	Определение величин линейных и угловых перемещений центра масс тележки.
7	Расчет расцентровки валов двигателя и редуктора. Выбор муфты или расчет
	относительного перемещения точек подвешивания тягового двигателя к раме
	тележки
	Определение величин перемещений для расчета несоосности (расцентровки) валов двигателя и редуктора.
8	Проектирование резинометаллического амортизатора в подвеске двигателя или
	редуктора
	Выбор размеров и расчет коэффициента жесткости резинометаллического амортизатора и общей
	жесткости подвески редуктора.
9	Эскиз и схема устройства безопасности против падения элементов привода на путь
	Выбор схемы устройства безопасности.
10	Составления заключения по работе
	Описание спроектированного тягового привода и тяговой передачи с указанием основных параметров
4.1	передачи.
11	Постановка целей и задач курса практических занятий.
	применение принципа разделения масс при проектировании упруго-вязких связей экипажной части
10	э.п.с.; определение наилучшей с точки зрения динамических свойств схемы рессорного подвешивания
12	Расчет параметров упруго-вязких связей э.п.с. с одной ступенью рессорного
	подвешивания.

№ п/п	Тематика практических занятий/краткое содержание
	Расчет инерционных и геометрических параметров заданной модели экипажа, построение на ПЭВМ амплитудно-частотной характеристики вертикальных ускорения исследуемой массы; анализ амплитудно-частотной характеристики.
13	Расчет параметров упруго-вязких связей э.п.с. с двумя ступенями рессорного подвешивания. Расчет инерционных и геометрических параметров заданной модели экипажа, построение на ПЭВМ амплитудно-частотной характеристики вертикальных ускорения тележки и кузова; анализ
14	амплитудно-частотных характеристик. Расчет параметров упруго-вязких связей э.п.с. с независимым рессорным подвешиванием тележек и кузова (двухмассовая модель).
	Расчет инерционных и геометрических параметров заданной модели экипажа, построение на ПЭВМ амплитудно-частотных характеристик вертикальных ускорения тележки и кузова; анализ амплитудно-частотных характеристик.
15	Расчет параметров упруго-вязких связей э.п.с. с двумя ступенями рессорного подвешивания тележек и кузова, и с дополнительным рессорным подвешиванием тяговых двигателей. Расчет инерционных и геометрических параметров заданной модели экипажа, построение на ПЭВМ амплитудно-частотных характеристик вертикальных ускорений двигателей, тележек и кузова; анализ амплитудно-частотных характеристик.
16	Анализ результатов расчета вертикальных колебаний э.п.с. при различных схемах подвешивания основных масс. Сравнение амплитудно-частотных характеристик вертикальных ускорений подрессоренных масс; определение наилучшей с точки зрения динамических свойств схемы рессорного подвешивания.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Выполнение курсового проекта	
2	Выполнение курсового проекта.	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов

«Проектирование рессорного подвешивания э.п.с.». Задание на курсовой проект включает в себя тип э.п.с., конструкционную скорость, осевую формулу, нагрузку на ось.

№ варианта Тип ЭПС Конструкционная скорость, км/ч Проектная нагрузка КП на рельс, кН Габаритные размеры ТД, мм Макс частота вращения ТД, об/мин

1 Электровоз 110 230 D=860 L=900 1820

- 2 Электровоз 160 230 D=850 L=800 1950
- 3 Электропоезд 130 220 D=780 L=800 1950
- 4 Электровоз 110 230 D=900 L=900 1900
- 5 Электровоз 140 220 D=850 L=950 1850
- 6 Электропоезд 200 190 D=780 L=800 2100
- 7 Электровоз 140 230 D=870 L=900 1950
- 8 Электровоз 110 220 D=880 L=850 1950
- 9 Электропоезд 140 200 D=750 L=900 1800
- 10 Электровоз 110 210 D=980 L=850 1900

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

λr		
№	Библиографическое описание	Место доступа
п/п	<u> </u>	•
1	Механическая часть тягового	НТБ (уч.3); НТБ (уч.6); НТБ (фб.)
	подвижного состава И.В. Бирюков;	
	А.Н. Савоськин; Г.П. Бурчак; Под ред.	
	И.В. Бирюкова Однотомное издание	
	Транспорт, 1992	
2	Методические указания к	НТБ (уч.3)
	лабораторным работам по курсу	
	"Механическая часть Э.П.С." по дисц.	
	"Проектирование механической части	
	Э.П.С." С.Д. Крушев, А.И. Поляков,	
	Е.К. Рыбников; МИИТ. Каф.	
	"Электрическая тяга" Однотомное	
	издание МИИТ, 2002	
3	Теория и конструкция локомотивов:	https://reader.lanbook.com/book/59903/preview#1
	учебник / Г. С. Михальченко, В. Н.	
	Кашников, В. С. Коссов, В. А. Симонов	
	; под редакцией Г. С. Михальченко. —	
	Москва: , 2006. — 584 с. — ISBN 5-	
	89035-372-1	
1	Теория и конструкция локомотивов	Библиотека МКТ (Люблино); НТБ (ЭЭ); НТБ
	Г.С. Михальченко, В.Н. Кашников, В.С.	(уч.6); НТБ (фб.); НТБ (чз.2)
	Коссов, В.А. Симонов; Ред. Г.С.	
	Михальченко; Под Ред. Г.С.	
	Михальченко Однотомное издание	
	Маршрут , 2006	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)

Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru)

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)

Izmerov.narod.ru/privod/index.html (История тягового привода)

www.gmt-gmbh.de (Каталоги по резинометаллическим элементам для подвижного состава)

http://instructionsrzd.ucoz.ru/ (литература железнодорожной тематики)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

1 Система автоматизированного проектирования SolidWorks Система автоматизированного проектирования Компас Специализированная программа Mathcad

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Стенд «Тяговый редуктор с резинокордной муфтой» применяется для – визуального изучения типовой конструкции тяговой передачи электропоездов – изучение вибраций, создаваемых подшипниками на корпусе редуктора

9. Форма промежуточной аттестации:

Экзамен в 8 семестре.

Зачет в 9 семестре.

Курсовой проект в 9 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электропоезда и локомотивы» А.П. Васильев

профессор, профессор, к.н. кафедры

«Электропоезда и локомотивы» Е.К. Рыбников

Согласовано:

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин