МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Микропроцессорная техника в мехатронных и робототехнических комплексах

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Автоматизация и роботизация

технологических процессов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 2053

Подписал: заведующий кафедрой Баранов Леонид Аврамович

Дата: 07.11.2025

1. Общие сведения о дисциплине (модуле).

Целью преподавания дисциплины «Микропроцессорная техника в мехатронных и роботехнических комплексов» систематизированные знания по архитектуре и основным компонентам современных робототехнических средств, методику и практические навыки алгоритмизации и программирования с использованием языков высокого уровня.

Дисциплина «Микропроцессорная техника в мехатронных и роботехнических комплексов» относится к числу профессиональных прикладных дисциплин в силу направленности материала по проблемам робототехники и его важности для базовой подготовки специалиста.

робототехнических Современное состояние систем, принципов построения цифровой И аналоговых интерфейсов PTC, изучение современных технологий построения сети для РТС, реализующих принцип открытых систем, технологии программирования с использованием WEB ориентированных языков. робототехника, мехатроника и робототехнические системы - область науки и техники, ориентированная на создание роботов, робототехнических И систем, предназначенных автоматизации сложных технологических процессов и операций, в том числе, выполняемых в недетерминированных условиях, для замены человека при выполнении тяжелых, утомительных и опасных работ. "Мехатроника" как область и техник, основана на синергетическом отдельная науки объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающими проектирование качественно модулей, производство новых систем машин интеллектуальным управлением их функциональными движениями

Таким образом, дисциплина «Микропроцессорная техника в мехатронных и роботехнических комплексов» является неотъемлемой составной частью профессиональной подготовки Мехатроника и робототехника. Вместе с другими дисциплинами цикла профессиональных дисциплин изучение данной дисциплины призвано формировать специалиста и вырабатывать у него навыки:

Строгость в суждениях;

Творческое мышление;

Организованность и работоспособность;

Дисциплинированность;

Самостоятельность и ответственность.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Способен производить комплексную настройку мехатронных и робототехнических систем, используя программное обеспечение котороллеров и управляющих ЭВМ, их систем управления .

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- принципы работы мехатронных устройств и робототехнических систем;
 - основы цифровой и аналоговой электроники.

Уметь:

- осуществлять настройку мехатронных и робототехнических устройств и систем.

Владеть:

- навыками разработки программного обеспечения для обработки информации и управления в мехатронных и робототехнических системах.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Коли	Количество часов	
	Всего	Семестр №4	
Контактная работа при проведении учебных занятий (всего):	66	66	
В том числе:			
Занятия лекционного типа	34	34	
Занятия семинарского типа	32	32	

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации

образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 78 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No॒		
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Введение.	
	Водная лекция. Цели и задачи дисциплины.	
2	Основы архитектуры микропроцессорных устройств.	
	Определение основных терминов.	
	Общие принципы организации микро-ЭВМ.	
3	Архитектура центрального процессора.	
	Структура микропроцессора.	
	Микропроцессор 8080.	
	Микроконтроллер CISC архитектуры MCS-51.	
	Микроконтроллер RISC архитектуры AVR.	
4	Память и интерфейсы внешних устройств.	
	Запоминающие устройства.	
	Общие принципы организации интерфейсов внешних устройств.	
5	Программирование микроконтроллеров инструментальными средствами	
	разработки и отладки.	
	Принципы построения механизма прерываний.	
	Контроллер прерываний.	
	Таймеры-счетчики.	
	Интерфейсы следовательно и параллельного ввода/вывода.	

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание	
1	ЛР №1	
	Изучение архитектуры МП устройств.	
2	ЛР № 2	
	Изучение архитектуры ЦП intel	

No	Наименование лабораторных работ / краткое содержание	
Π/Π		
3	ЛР №3	
	Изучение построения памяти.	
4	ЛР №4	
	Изучение интерфейса USB с внешними устройствами	
5	ЛР №5	
	Программирование на языке ассемблер	
6	ЛР №6	
	Изучение принципов построения локальных вычислительных сетей с микроконтроллерами	

Практические занятия

No	Томотика проктиноских рандтий/краткое со поржание	
Π/Π	Тематика практических занятий/краткое содержание	
1	ПЗ №1	
	Основные элементы архитектуры и связь локальными сетями.	
2	ПЗ №2	
	Устройство и работа ЦП Intel	
3	ПЗ №3	
	Построение ОЗУ и flash	
4	ПЗ №4	
	Изучение сетевых интерфейсов	
5	ПЗ №5	
	Изучение инструментальных средств разработки и отладки на языке ассемблер	
6	ПЗ №6	
	Изучение объектов локальных сетей: коммутаторов, маршрутизаторов защитных экранов и	
	беспроводных точек доступа	

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вид самостоятельной работы	
Π/Π		
1	Повторение лекционного материала.	
2	Подготовка к тестированию по разделам 1,2.	
3	Подготовка к практическому занятию.	
4	Подготовка к тестированию для прохождения первого текущего контроля -	
	(РИТМ-МИИТ) ПК1 по разделам 3,4.	
5	Проработка лекционного материала и учебной литературы по данному разделу.	
6	Подготовка к промежуточной аттестации.	
7	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

$N_{\underline{0}}$	Fugurar patricipation arrivative	Маста настина
Π/Π	Биолиографическое описание	Место доступа

1	Архитектура компьютеров М.В.	http://fpmi.bsu.by/main.aspx?guid=25101
	Буза Минск: Новое знание, 2006	
2	Основы микропроцессорной	https://elib.spbstu.ru/dl/2068.pdf/download/2068.pdf
	техники. Принципы выполнения	
	операций обработки данных и	
	управления в микропроцессорных	
	системах семейства MCS51 B.B.	
	Сташин М.: МИИТ , 2005	
3	Электронные образовательные	
	ресурсы «Микропроцессорная	НТБ (уч.б.)
	техника в мехатронике и	
	робототехнике» В.М. Алексеев М.:	
	МИИТ, 2015	
4	Лабораторные и практические	НТБ (уч.б.)
	занятия для студентов	
	специальностей "Мехатроника и	
	робототехника" Алексеев В.М.,	
	Стряпкин Л.И. М.: МИИТ, 2015	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
 - 2. http://elibrary.ru/ научно-электронная библиотека.
 - 3. http://robotosha.ru/
 - 4. www.chipinfo.ru.
 - 5. http://siblec.ru/
 - 6. http://autex.ru/
 - 7. http://www.intuit.ru
 - 8. http://twirpx.com
 - 9. http://habrahabr.ru
 - 10. http://semestr.ru
 - 11. htth://www.cisco.ru
- 12. Поисковые системы: Yandex, Google, Mail, база научно-технической информации ВИНИТИ РАН.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены лицензионными программными продуктами:

- Microsoft Office;
- интегрированная среда разработки программного обеспечения для эмуляции сетевого оборудования AUTOCAD;
 - среда разработки программного обеспечения Ассемблер.

Для проведения практических занятий и лабораторных работ необходимо иметь комплекс программ для ПЭВМ, обеспечивающих возможность выполнения работ:

- в области построения программных и аппаратных средств робототехнических систем;
 - программные продукты MICROSUM.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения аудиторных занятий и самостоятельной работы требуется:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET и INTRANET.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
- 3. Компьютерный класс с кондиционером. Рабочие места студентов в компьютерном классе, подключённые к сетям INTERNET и INTRANET
- 4. Для проведения практических занятий: компьютерный класс; кондиционер; компьютеры с минимальными требованиями Core 5, ОЗУ 4 ГБ, HDD 300 ГБ, wifi, USB 2.0.
 - 9. Форма промежуточной аттестации:

Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, профессор, д.н. кафедры «Управление и защита информации»

В.М. Алексеев

А.В. Ваганов

Согласовано:

Заведующий кафедрой НТТС П.А. Григорьев

Заведующий кафедрой УиЗИ Л.А. Баранов

Председатель учебно-методической

комиссии С.В. Володин