МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)»

УТВЕРЖДАЮ:

Директор ИПСС

Т.В. Шепитько

25 мая 2018 г.

Кафедра «Системы автоматизированного проектирования»

Автор Ожерельев Виктор Алексеевич, к.т.н., доцент

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Моделирование механических систем»

Направление подготовки: 09.03.01 – Информатика и вычислительная

техника

М.Ф. Гуськова

Профиль: Системы автоматизированного проектирования

Квалификация выпускника: Бакалавр

Форма обучения: очная

Год начала подготовки 2018

Одобрено на заседании кафедры

Одобрено на заседании Учебно-методической комиссии института

Протокол № 2 21 мая 2018 г.

Председатель учебно-методической

комиссии

Протокол № 10 15 мая 2018 г.

Заведующий кафедрой

И.В. Нестеров

1. Цели освоения учебной дисциплины

Целью освоения учебной дисциплины (модуля) «Моделирование механических систем» является выработка у обучающегося:

- ? целостного представления о расчетной схеме реального объекта;
- ? умения анализировать инженерные сооружения и разрабатывать алгоритмы моделирования работы сооружений;
- ? навыков составления алгоритмов и программ для расчета математических моделей инженерных сооружений;
- ? навыков использования прикладных программных средств и информационных технологий, применяемых при решении основных профессиональных задач.
- В результате изучения курса студент должен:
- ? знать вычислительные алгоритмы позволяющие моделировать работу плоских стержневых систем;
- ? уметь использовать разработанные алгоритмы и программы для расчета плоских стержневых систем;
- ? иметь представление о переходе от реального объекта к расчетной схеме.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Моделирование механических систем" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ПК-3	способностью обосновывать принимаемые проектные решения,
	осуществлять постановку и выполнять эксперименты по проверке их
	корректности и эффективности

4. Общая трудоемкость дисциплины составляет

10 зачетных единиц (360 ак. ч.).

5. Образовательные технологии

В качестве основной формы проведения практических занятий по учебной дисциплине «Моделирование механических систем» рекомендуется индивидуальное выполнение практических и лабораторных работ. Во вводной части занятия необходимо проверить наличие студентов и их готовность к практическому занятию (лабораторной работе), объявить тему, цели и учебные вопросы занятия. Далее следует разобрать пример задания, а затем выдать задания для самостоятельного решения. В конце занятия рекомендуется объявить тему для самостоятельной работы и выдать задания для самостоятельного решения дома..

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Общие замечания о моделировании механических систем

Тема: Общие соотношения между классической и вычислительной строительной механикой. Понятие системы и системного подхода применительно к стержневой системе. Уравнения равновесия. Поузловой подход для формирования матрицы уравнений равновесия.

РАЗДЕЛ 2

Поэлементный подход формирования матрицы уравнений равновесия

Тема: Матрица уравнений равновесия для шарнирного элемента. Алгоритм формирования матрицы уравнений равновесия для стержневой системы. Построение линий влияния при использовании уравнений равновесия

РАЗДЕЛ 3

Геометрические уравнения для элемента

Тема: Связь геометрических и статических уравнений (двойственность статического и геометрического пространств)

РАЗДЕЛ 4

Физические уравнения для элемента и стержневой системы

Тема: Построение полной системы уравнений строительной механики. Учет заданных деформаций. Алгоритм расчета: вычисление усилий и перемещений

Тема: Кинематический анализ образования стержневых систем по матрице уравнений равновесия

РАЗДЕЛ 5

Программная реализация расчета статически определимых шарнирных стержневых систем

Тема: Структура исходных данных и алгоритм программной реализации расчета статически определимых шарнирных стержневых систем

РАЗДЕЛ 6

Подходы к решению полной системы уравнений

Тема: Смешанный метод

Тема: Метод перемещений

РАЗДЕЛ 7

Поэлементный подход к формированию матрицы жесткости ансамбля элементов

Тема: Получение формул, по которым вычисляются коэффициенты матрицы жесткости шарнирного элемента. Алгоритм программной реализации

РАЗДЕЛ 8

Алгоритм учета кинематических граничных условий

Тема: Разработка исходной информации и алгоритма программной реализации

РАЗДЕЛ 9

Вычисления усилий по известным перемещениям

Тема: Получение формул для вычисления усилий по известным перемещениям. Алгоритм программной реализации

РАЗДЕЛ 10

Решение полной системы уравнений строительной механики по методу сил

Тема: Алгоритм решения задачи по методу сил. Сравнение метода сил и метода перемещений по числу вычислительных операций

РАЗДЕЛ 11

Построение матрицы жесткости для стержня общего положения с жесткими узлами

Тема: Построение матрицы жесткости для стержня общего положения с жесткими узлами (шесть степеней свободы) с использованием полной системы уравнений. Построение матрицы жесткости элемента с использованием табличных эпюр моментов из курса классической строительной механики.

РАЗДЕЛ 12

Связь между перемещениями в местной и глобальной системах координат

Тема: Связь между перемещениями в местной и глобальной системах координат. Системный подход к построению матрицы жесткости стержня общего положения: переход от матрицы жесткости в местной системе координат к матрице жесткости в глобальной системе координат.

Тема: Алгоритм программной реализации построения матрицы жесткости элемента общего положения.

РАЗДЕЛ 13

Построение матрицы жесткости для элемента с пятью степенями свободы

Тема: Построение матрицы жесткости для элемента с пятью степенями свободы в местной системе координат.

Тема: Алгоритм вычисления усилий по известным перемещениям.

РАЗДЕЛ 14

Учет упругого основания

Тема: Учет упругого основания. Модель Винклера. Построение матрицы жесткости для элемента на упругом основании (приближенная модель). Тестовые примеры.

РАЗДЕЛ 15

Моделирование работы рельса

Тема: Моделирование работы рельса с использованием элемента приближенной модели на винклеровском основании.

РАЗДЕЛ 16

Построение матрицы жесткости стержневых элементов по дифференциальному уравнению

Тема: Построение матрицы жесткости стержневых элементов по дифференциальному уравнению на примере стержня работающего на растяжение — сжатие. Построение матрицы жесткости элемента на винклеровском основании (точная модель)

РАЗДЕЛ 17

Учет влияния продольной силы на поперечные перемещения

Тема: Учет влияния продольной силы на поперечные перемещения (продольнопоперечный изгиб). Построение матрицы жесткости приближенной модели. Построение матрицы жесткости точной модели по дифференциальному уравнению. Алгоритм программной реализации. Алгоритм вычисления критического параметра нагрузки.

РАЗДЕЛ 18

Решение дифференциальных уравнений

Тема: Линейное однородное уравнение 2-го порядка с постоянными коэффициентами. Линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами

РАЗДЕЛ 19

Преобразование Лапласа

Тема: Применение преобразования Лапласа к решению обыкновенных дифференциальных уравнений с начальными условиями

РАЗДЕЛ 20

Гиперболические функции

Тема: Геометрическое определение, связь с тригонометрическими функциями. Важные тождества

РАЗДЕЛ 21

Вывод дифференциальных уравнений для балки, балки на упругом основании, при гармонических колебаниях и при продольно-поперечном изгибе

Тема: Простая балка. Балка на упругом основании. Балка при гармонических колебаниях. Балка в условиях продольно-поперечного изгиба

РАЗДЕЛ 22

Применение комплекса Mathematica для построения эпюр

Тема: Применение комплекса Mathematica для построения эпюр v, ?, M, Q в балках

РАЗДЕЛ 23

Примеры построения эпюр в балках при различных условиях

Тема: Равномерно распределенная нагрузка по всей длине балки, распределенная нагрузка на левой половине балки, сосредоточенная сила, сосредоточенный момент, две сосредоточенные силы, врезанный шарнир, балка на сплошном винклеровском упругом основании

Тема: Балка при гармонических колебаниях, растянуто-изогнутая балка, сжато-изогнутая балка

РАЗДЕЛ 24

Определение критических сил

Тема: Определение критических сил

РАЗДЕЛ 25

Определение частот собственных колебаний

Тема: Определение частот собственных колебаний