МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование механических систем

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль): Системы автоматизированного

проектирования

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2899

Подписал: заведующий кафедрой Нестеров Иван

Владимирович

Дата: 08.02.2022

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение студентами представления о расчетной схеме реального объекта;
 - изучение студентами алгоритмов моделирования работы сооружений. Задачами дисциплины (модуля) являются:
- овладение навыками составления алгоритмов и программ для расчета математических моделей инженерных сооружений;
- формирование навыков использования прикладных программных средств и информационных технологий, применяемых при решении основных профессиональных задач.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-1** Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;
- **ПК-1** Способен участвовать в исследовательской деятельности в области совершенствования информационных систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

вычислительные алгоритмы позволяющие моделировать работу плоских стержневых систем

Уметь:

использовать разработанные алгоритмы и программы для расчета плоских стержневых систем

Владеть:

методикой перехода от реального объекта к расчетной схеме

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 14 з.е. (504 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов				
Тип учебных занятий	Всего	Семестр				
	Beero	№5	№6	№ 7	№8	
Контактная работа при проведении учебных занятий (всего):	286	84	70	80	52	
В том числе:						
Занятия лекционного типа	120	34	28	32	26	
Занятия семинарского типа	166	50	42	48	26	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 218 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание			
1	Общие замечания о моделировании механических систем			
	Общие соотношения между классической и вычислительной строительной механикой. Понятие системы и системного подхода применительно к стержневой системе. Уравнения равновесия.			
	Поузловой подход для формирования матрицы уравнений равновесия.			
2	Поэлементный подход формирования матрицы уравнений равновесия			
	Матрица уравнений равновесия для шарнирного элемента. Алгоритм формирования матрицы уравнений равновесия для стержневой системы. Построение линий влияния при использовании уравнений равновесия			
3	Геометрические уравнения для элемента			
	Связь геометрических и статических уравнений (двойственность статического и геометрического пространств)			

№	
п/п	Тематика лекционных занятий / краткое содержание
4	Физические уравнения для элемента и стержневой системы
	Построение полной системы уравнений строительной механики. Учет заданных деформаций. Алгоритм расчета: вычисление усилий и перемещений
5	Программная реализация расчета статически определимых шарнирных стержневых
	систем
	Структура исходных данных и алгоритм программной реализации расчета статически определимых шарнирных стержневых систем
6	Подходы к решению полной системы уравнений
	Смешанный метод
7	Получение формул, по которым вычисляются коэффициенты матрицы жесткости
	шарнирного элемента.
	Алгоритм программной реализации
	Поэлементный подход к формированию матрицы жесткости ансамбля элементов
8	Алгоритм учета кинематических граничных условий
	Разработка исходной информации и алгоритма программной реализации
9	Метод сил
10	Решение полной системы уравнений строительной механики по методу сил
10	Построение матрицы жесткости для стержня общего положения с жесткими узлами
	Построение матрицы жесткости для стержня общего положения с жесткими узлами (шесть степеней свободы) с использованием полной системы уравнений. Построение матрицы жесткости
	элемента с использованием табличных эпюр моментов из курса классической строительной
	механики.
11	Связь между перемещениями в местной и глобальной системах координат
	Связь между перемещениями в местной и глобальной системах координат. Системный подход к
	построению матрицы жесткости стержня общего положения: переход от матрицы жесткости в
	местной системе координат к матрице жесткости в глобальной системе координат.
12	Алгоритм программной реализации построения матрицы жесткости элемента
	общего положения.
	Построение алгоритма программной реализации построения матрицы жесткости элемента общего
	положения. Оценка трудоемкости алгоритма.
13	Построение матрицы жесткости для элемента с пятью степенями свободы
13	Построение матрицы жесткости для элемента с пятью степенями свободы в местной системе
	координат.
	Алгоритм вычисления усилий по известным перемещениям.
14	Учет упругого основания.
	Модель Винклера. Построение матрицы жесткости для элемента на упругом основании
	(приближенная модель). Тестовые примеры.
	Учет упругого основания
15	Моделирование работы рельса
	Моделирование работы рельса с использованием элемента приближенной модели на винклеровском
16	Основании.
16	Построение матрицы жесткости стержневых элементов по дифференциальному
	уравнению
	Построение матрицы жесткости стержневых элементов по дифференциальному уравнению на примере стержня работающего на растяжение – сжатие. Построение матрицы жесткости элемента
	на винклеровском основании (точная модель)
	I

№ п/п	Тематика лекционных занятий / краткое содержание			
17	Учет влияния продольной силы на поперечные перемещения			
	Учет влияния продольной силы на поперечные перемещения (продольно-поперечный изгиб). Построение матрицы жесткости приближенной модели. Построение матрицы жесткости точной модели по дифференциальному уравнению. Алгоритм программной реализации. Алгоритм вычисления критического параметра нагрузки.			
18	Решение дифференциальных уравнений			
	Линейное однородное уравнение 2-го порядка с постоянными коэффициентами. Линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами			
19	Преобразование Лапласа Применение преобразования Лапласа к решению обыкновенных дифференциальных уравнений с начальными условиями			
20	Гиперболические функции			
	Геометрическое определение, связь с тригонометрическими функциями. Важные тождества			
21	Вывод дифференциальных уравнений для балки, балки на упругом основании, при			
	гармонических колебаниях и при продольно-поперечном изгибе			
	Простая балка. Балка на упругом основании. Балка при гармонических колебаниях. Балка в			
	условиях продольно-поперечного изгиба			
22	Примеры построения эпюр в балках при различных условиях			
	Равномерно распределенная нагрузка по всей длине балки, распределенная нагрузка на левой половине балки, сосредоточенная сила, сосредоточенный момент, две сосредоточенные силы, врезанный шарнир, балка на сплошном винклеровском упругом основании			
23	Балка при гармонических колебаниях, растянуто-изогнутая балка, сжато-изогнутая			
23	балка			
	Расчет балки при гармонических колебаниях.			
	Расчет растянуто-изогнутой балки.			
	Расчет сжато-изогнутой балки.			
24	Определение критических сил			
	Алгоритм определения критических сил и его реализация.			
25	Определение частот собственных колебаний			
	Алгоритм определения частот собственных колебаний и его раелизация.			

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание		
п/п	панменование наобраторных работ / краткое содержание		
1	Общие соотношения между классической и вычислительной строительной		
	механикой.		
	Общие соотношения между классической и вычислительной строительной механикой.		
	Понятие системы и системного подхода применительно к стержневой системе.		
	Уравнения равновесия.		
	Поузловой подход для формирования матрицы уравнений равновесия.		
2	Алгорим формирования матрицы уравнений равновесия для шарнирного элемента.		
	Матрица уравнений равновесия для шарнирного элемента.		
	Алгоритм формирования матрицы уравнений равновесия для стержневой системы.		
	Построение линий влияния при использовании уравнений равновесия		

No			
п/п	Наименование лабораторных работ / краткое содержание		
3	Связь геометрических и статических уравнений.		
	Связь геометрических и статических уравнений: двойственность статического и геометрич		
	пространств. Примеры расчета		
4	Построение полной системы уравнений строительной механики.		
	Учет заданных деформаций.		
Алгоритм расчета: вычисление усилий и перемещений			
5	Программная реализация расчета статически определимых шарнирных стержневых систем		
	Изучение структуры исходных данных и алгоритма программной реализации расчета статически определимых шарнирных стержневых систем		
6	Смешанный метод		
	Смешанный метод: изучение структуры исходных данных и алгоритма реализации.		
7	Формулы для вычисления коэффициентов матрицы жесткости шарнирного		
	элемента.		
	Получение формул, по которым вычисляются коэффициенты матрицы жесткости шарнирного		
	элемента.		
	Алгоритм программной реализации.		
8	Вычисление коэффициентов матрицы жесткости шарнирного элемента.		
	Разработка исходной информации и алгоритма программной реализации		
9	Метод сил		
10	Формулы для расчета и алгоритм метода		
10	Построение матрицы жесткости для стержня общего положения с жесткими		
	узлами.		
	Построение матрицы жесткости для стержня общего положения с жесткими узлами (шесть степеней свободы) с использованием полной системы уравнений.		
	Построение матрицы жесткости элемента с использованием табличных эпюр моментов из курса		
	классической строительной механики.		
11	Связь между перемещениями в местной и глобальной системах координат.		
	Связь между перемещениями в местной и глобальной системах координат.		
	Системный подход к построению матрицы жесткости стержня общего положения: переход от		
	матрицы жесткости в местной системе координат к матрице жесткости в глобальной системе		
10	координат.		
12	Алгоритм построения матрицы жесткости элемента общего положения Алгоритм программной реализации построения матрицы жесткости элемента общего положения		
13	Матрица жесткости для элемента с пятью степенями свободы в местной системе		
13	•		
	координат. Построение матрицы жесткости для элемента с пятью степенями свободы в местной системе		
	координат.		
14	Алгоритм вычисления усилий по известным перемещениям.		
	Изучение алгоритма вычисления усилий по известным перемещениям на примерах.		
15	Учет упругого основания.		
	Учет упругого основания.		
	Модель Винклера.		
	Построение матрицы жесткости для элемента на упругом основании (приближенная модель).		
4 -	Тестовые примеры.		
16	Моделирование работы рельса.		
	Моделирование работы рельса с использованием элемента приближенной модели на винклеровском		
	основании.		

$N_{\underline{0}}$	Наименование лабораторных работ / краткое содержание		
п/п			
17	Построение матрицы жесткости стержневых элементов.		
	Построение матрицы жесткости стержневых элементов по дифференциальному уравнению на		
	примере стержня работающего на растяжение – сжатие.		
	Построение матрицы жесткости элемента на винклеровском основании (точная модель)		
18	Учет влияния продольной силы на поперечные перемещения (продольно-		
	поперечный изгиб).		
	Учет влияния продольной силы на поперечные перемещения (продольно-поперечный изгиб).		
	Построение матрицы жесткости приближенной модели.		
	Построение матрицы жесткости точной модели по дифференциальному уравнению.		
	Алгоритм программной реализации.		
	Алгоритм вычисления критического параметра нагрузки.		
19	Линейные уравнение 2-го порядка с постоянными коэффициентами: виды и		
	методы решения.		
	Линейное однородное уравнение 2-го порядка с постоянными коэффициентами.		
	Линейное неоднородное уравнение 2-го порядка с постоянными коэффициентами.		
20	Виды нагрузки на балку.		
	Равномерно распределенная нагрузка по всей длине балки, распределенная нагрузка на левой		
	половине балки, сосредоточенная сила, сосредоточенный момент, две сосредоточенные силы,		
	врезанный шарнир, балка на сплошном винклеровском упругом основании		
21	Балка при гармонических колебаниях.		
	Балка при гармонических колебаниях, растянуто-изогнутая балка, сжато-изогнутая балка		
22	Определение критических сил		
	Определение критических сил: алгоритм		
23	Определение частот собственных колебаний		
	Определение частот собственных колебаний: формулы и алгоритм расчета.		

4.3. Самостоятельная работа обучающихся.

No_	Вид самостоятельной работы	
п/п	1	
1	Изучение дополнительной литературы.	
2	Подготовка к практическим занятиям.	
3	Выполнение курсового проекта.	
4	Выполнение курсовой работы.	
5	Выполнение расчетно-графической работы.	
6	Подготовка к промежуточной аттестации.	
7	Подготовка к текущему контролю.	

4.4. Примерный перечень тем видов работ

1. Примерный перечень тем расчетно-графических работ

С использованием программы «Катран» выполнить расчёт конструкции (рис. ПО ВАРИАНТУ), сформированной для произвольного набора параметров.

На экран вывести: расчётную схему, деформированную схему, эпюры моментов и поперечных сил.

На деформированной схеме показать величину максимального перемещения одного из узлов конструкции.

Характеристики материала: E=2.0e6, G=1.0e5;

Жесткостные характеристики формировать следующим образом:

Площадь поперечного сечения: F=Nб+Nж;

Момент инерции: J = N6*1000 + Nж;

Где № - номер варианта

Nж – номер жёсткости (см. рис. по варианту)

2. Примерный перечень тем курсовых проектов

Все задания выполняются по индивидуальному варианту.

С использованием программы «Катран» выполнить расчёт пластины (рис. ПО ВАРИАНТУ).

На экран вывести: расчётную схему, деформированную схему, эпюры Sigma-1 и Sigma-2 с палитрами напряжений.

Характеристики пластины: E=2.0e6, $\mu=0.2$, толщина ?=0.5

3. Примерный перечень тем курсовых работ

Все задания выполняются по индивидуальному варианту.

- 1. Алгоритм и программная реализация формирования матрицы уравнений равновесия.
 - 2. Построение линий влияния.
- 3. Разработка функций решения полной системы уравнений для статически определимой системы:
 - ввод исходных данных;
 - формирование матрицы уравнений равновесия;
 - транспонирование матрицы уравнений равновесия;
 - вычисление усилий (решение системы уравнений);
 - вычисление деформаций;
 - печать результатов.
- 4. Разработка функций решения полной системы уравнений для статически определимой системы:
 - ввод исходных данных;

- формирование матрицы уравнений равновесия;
- транспонирование матрицы уравнений равновесия;
- вычисление усилий (решение системы уравнений);
- вычисление деформаций;
- вычисление перемещений узлов;
- печать результатов.
- 5. Решение тестовых и индивидуальных задач на силовое воздействие.
- 6. Решение тестовых и индивидуальных задач на температурное воздействие.
 - 7. Построение линий влияния статическим методом.
 - 8. Построение линий влияния кинематическим методом.
- 9. Разработка функций для решения полной системы уравнений по методу перемещений:
 - ввод исходных данных;
- формирование матрицы жесткости ансамбля элементов (включает в себя построение матрицы жесткости элемента);
 - учет кинематических граничных условий;
 - решение системы уравнений (вычисление перемещений);
- вычисление усилий (включает в себя функцию построения матрицы усилий);
 - вывод перемещений и усилий.
- 10. Разработка функции, реализующей решение полной системы уравнений по методу сил.
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

I	п Л∕ №	Библиографическое описание	Место доступа
1		Котович А.В. Решение задач теории упругости методом конечных элементов / А.В. Котович Москва : МГТУ им. Н.Э. Баумана, 2012 106 с ISBN 978-5-7038-3567-8 URL:	https://ibooks.ru/bookshelf/386458/reading Текст: электронный.
		https://ibooks.ru/bookshelf/386	

	458/reading Текст:	
	электронный.	
2	•	https://reader.lanbook.com/book/339038?lms=b74cea5b8e3c
2	Шапошников, Н. Н.	ac27f8fe3370cac08712
	Строительная механика / Н.	ac2/161e33/0cac08/12
	Н. Шапошников, Р. Е.	
	Кристалинский, А. В. Дарков	
	; под редакцией Н. Н.	
	Шапошников. — 16-е изд.,	
	стер. — Санкт-Петербург:	
	Лань, 2023. — 692 с. — ISBN	
	978-5-507-47191-1. — Текст:	
	электронный // Лань:	
	электронно-библиотечная	
	система. — URL:	
	https://e.lanbook.com/book/339	
	038. — Режим доступа: для	
	авториз. пользователей.	
3	Матвеев, С. А. Основы	https://e.lanbook.com/book/407138
	метода конечных элементов:	
	учебное пособие / С. А.	
	Матвеев. — 2-е изд., испр. —	
	Омск : СибАДИ, 2023. — 65	
	с. — Текст : электронный //	
	Лань: электронно-	
	библиотечная система. —	
	URL:	
	https://e.lanbook.com/book/407	
	138. — Режим доступа: для	
	авториз. пользователей.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Система автоматизированного проектирования Autocad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовой проект в 6 семестре.

Экзамен в 7 семестре.

Зачет в 5, 6, 8 семестрах.

Курсовая работа в 7, 8 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Системы автоматизированного

проектирования» И.В. Нестеров

Согласовано:

Заведующий кафедрой САП И.В. Нестеров

Председатель учебно-методической

комиссии М.Ф. Гуськова