МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 20.03.01 Техносферная безопасность, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование опасных процессов в техносфере

Направление подготовки: 20.03.01 Техносферная безопасность

Направленность (профиль): Безопасность жизнедеятельности в

техносфере

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 2892

Подписал: И.о. заведующего кафедрой Нарусова Елена

Юрьевна

Дата: 11.06.2021

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Моделирование опасных процессов в техносфере» является подготовка будующего специалиста к моделированию опасных процессов и обеспечению безопасности эксплуатации технических систем опасных производственных объектов.

Задачами освоения учебной дисциплины являются:

- комплексное формирование у студентов знаний в области моделирования опасных производственных объектов;
- освоение студентами экспериментальных методов оценки технической системы;
- приобретение навыков математического моделирования технической системы;
 - приобретение навыков оценки техногенных рисков;
- моделирование и прогноз параметров риска происшествий с помощью диаграмм типа «Дерво», «Граф» и «Сеть»;
- освоить выполнение научных исследований в области обеспечения безопасной эксплуатации опасных производственных объектов, интерпретации результатов моделирования отказов и процесса эксплуатации с формулировкой аргументированных заключений и выводов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен обеспечивать безопасность человека и сохранение окружающей среды, основываясь на принципах культуры безопасности и концепции риск-ориентированного мышления;
- **ПК-8** Способен выполнять работу по решению научноисследовательских задач обеспечения безопасности производств, человека и окружающей среды.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- виды моделей и этапы процесса моделирования;
- виды экспериментальных исследований физических моделей;
- виды математического моделирования технической системы.

Уметь:

- анализировать источники литературы для проведения исследования, том числе экспериментальных;
- выполнять эксперимент и анализировать результаты экспериментальных исследований;
- составлять математическую модель и проводить анализ безопасности опасного производственного объекта.

Владеть:

- навыком проведения исследования, в том числе экспериментальных в области безопасности технологических процессов и производств;
- навыком прогноза социально-экономических последствий при развитии негативных событий, оказывающих влияние на экологическую обстановку.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество	
	часов	
	Всего	Сем.
		№7
Контактная работа при проведении учебных занятий (всего):	80	80
В том числе:		
Занятия лекционного типа	48	48
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 100 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован

полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№			
п/п	Тематика лекционных занятий / краткое содержание		
	Mayory v arrays yraysaaa vayayraaaay		
1 Модель и этапы процесса моделирования			
	Рассматриваемые вопросы:		
	Тема 1.1. Виды моделей и моделирование явлений в них.		
	Тема 1.2. Общие понятия и классификация экспериментальных исследований физических моделей.		
	Тема 1.3. Планирование испытаний.		
2 Экспериментальные методы оценки технической системы.			
	Рассматриваемые вопросы:		
	Тема 2.1. Экспериментальные методы оценки напряженно-деформированного состояния конструкций		
	технической системы.		
	Тема 2.2. Экспериментальные методы оценки эксплуатационных параметров технической системы.		
	Тема 2.3. Математическая обработка экспериментальных данных физической модели технической		
	системы.		
3	Нагрузки, действующие на техническую систему и их моделирование.		
	Рассматриваемые вопросы:		
	Тема 3.1. Ветровые нагрузки.		
	Тема 3.2. Статические нагрузки.		
	Тема 3.3. Динамические нагрузки.		
	Тема 3.4. Нагрузки от сил сопротивления движению.		
	Тема 3.5. Сейсмические, транспортные, монтажные нагрузки и нагрузки от снега и обледенения.		
	Тема 3.6. Комбинация нагрузок.		
4 Виды математического моделирования технической системы.			
	Рассматриваемые вопросы:		
	Тема 4.1. Математическое моделирование технической системы и нагрузок.		
	Тема 4.2. Математическое моделирование напряженно-деформированного состояния технической		
	системы на КЭ-моделях.		
5	Математическая модель и этапы процесса моделирования технических систем без		
	источника энергии.		
	Рассматриваемые вопросы:		
	Тема 5.1. Основы математического моделирования технических систем.		
	Тема 5.2. Свободные колебания линейных систем с одной степенью свободы и без неупругих		
	сопротивлений.		
	Тема 5.3. Свободные колебания в условиях наличия сил неупругого сопротивления.		
	Тема 5.4. Свободные колебания в условиях наличия сил сложного упруго-вязкого сопротивления.		
	Тема 5.5. Системы с одной степенью свободы с упругими сопротивлениями при нелинейной		
	восстанавливающей силе.		
	Тема 5.6. Математическое моделирование линейных технических систем с несколькими степенями		
	свободы.		

№		
п/п	Тематика лекционных занятий / краткое содержание	
6	Этапы процесса математического моделирования технических систем с источнико	
	энергии	
	Рассматриваемые вопросы:	
	Тема 6.1. Критические состояния технических систем.	
	Тема 6.2. Вынужденные колебания технических систем.	
	Тема 6.3. Параметрические колебания технических систем.	
	Тема 6.4. Автоколебания в технических системах.	
	Тема 6.5. Удар в технических системах.	
	Тема 6.6. Адекватность математической модели.	
7	Идентификация и предварительный анализ источников риска	
	Рассматриваемые вопросы:	
	Тема 7.1. Концепция выявления и предварительного анализа источников риска.	
	Тема 7.2. Методы и обобщенная процедура предварительной оценки параметров риска.	
	Тема 7.3. Представление и использование результатов предварительного анализа риска.	
	Тема 7.4. Апробация процедуры предварительного анализа и оценки параметров риска.	
8	Системное прогнозирование параметров риска происшествий с помощью диаграмм	
	типа «Дерево»	
	Рассматриваемые вопросы:	
	Тема 8.1. Правила построения диаграмм типа «дерево происшествий» и «дерево событий».	
	Тема 8.2. Качественный анализ моделей типа «Дерево».	
	Тема 8.3. Количественный анализ диграмм типа «Дерево».	
	Тема 8.4. Иллюстрированные модели прогнозирования риска с помощью диаграмм типа «Дерево».	
9	Моделирование и прогноз параметров риска происшествий с помощью диаграмм	
	типа «Граф»	
	Рассматриваемые вопросы:	
	Тема 9.1. Моделирование происшествий с помощью потокового графа.	
	Тема 9.2. Разработка аналитической модели, эквивалентной потоковому графу.	
	Тема 9.3. Обоснование и системный анализ результатов графо-аналитического моделирования.	
	Тема 9.4. Методика априорной оценки риска происшествий на объекте повышенной опасности.	
	Тема 9.5. Граф-модель возникновения присшествий на транспорте.	
10	Моделирование и прогноз параметров риска происшествий с помощью диаграмм	
	типа «Сеть»	
	Рассматриваемые вопросы:	
	Тема 10.1. Принципы построения и системного анализа стохастической структуры.	
	Тема 10.2. Оценка параметров опасных событий количественным анализом сети GERT.	
	Тема 10.3. Логико-лингвистическая модель происшествия в человеко-машинной системе.	
	Тема 10.4. Алгоритм имтационного моделирования процесса появления происшествий на сонове сети	
	GERT.	
	Тема 10.5. Прогнозирование вероятности происшествий методом имитационного моделирования.	

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание	
1	Экспериментальное исследование динамики вертикального подъема груза на	
	технической системе – электротали.	
	В процессе выполнени практической работы студент научится проводить подготовку к эсперименту и	

<u>№</u>		
Π/Π	Тематика практических занятий/краткое солержание	
	выполнять сами эскпериментальные исследования с получением осциллограммы работы механизма подъема электротали.	
2	Экспериментальное исследование динамики движений технической системы –	
	промышленного робота В процессе выполнени практической работы студент научится проводить подготовку к эсперименту и выполнять сами эскпериментальные исследования с получением осциллограммы работы промышленного робота.	
3	Экспериментальное исследование динамики технической системы – колодочного	
	тормоза. В процессе выполнени практической работы студент научится проводить подготовку к эсперименту и выполнять сами эскпериментальные исследования с получением осциллограммы работы колодочного тормоза.	
4	Экспериментальное исследование динамики технической системы — ленточного конвейера. В процессе выполнени практической работы студент научится проводить подготовку к эсперименту и выполнять сами эскпериментальные исследования с получением осциллограммы работы ленточного	
	конвейера.	
5	Экспериментальное исследование динамики технической системы – винтового	
	наклонного конвейера. В процессе выполнени практической работы студент научится проводить подготовку к эсперименту и выполнять сами эскпериментальные исследования с получением осциллограммы работы винтового наклонного конвейера.	
6	Экспериментальное исследование динамики технической системы – винтового	
	вертикального конвейера. В процессе выполнени практической работы студент научится проводить подготовку к эсперименту и выполнять сами эскпериментальные исследования с получением осциллограммы работы винтового вертикального конвейера.	
7	Математическое моделирование и анализ систем в системе Mathcad.	
	В процессе выполнени практической работы студент научится вычислять значения заданной функции, проводить интерполяцию определителем Вандермонда, многочленом Лагранжа, с помощью интерполяционных формул Ньютона. Кроме того, проводить линейную интерполяцию заданной функции с помощью встроенной интерполяционной функции linterp, сплайн-интерполяцию с помощью функций lspline, pspline, cspline и interp, выполнить предсказание (экстраполяцию) с использованием функции predict.	
8	Математическая обработка результатов экспериментальных данных в системе	
-	Mathcad. В процессе выполнени практической работы студент научится аппроксимировать многочленами 2-ой и 6-ой степени по методу наименьших квадратов; определять параметры линейной регрессии с использованием встроенных функций Mathcad slope и intercept; аппроксимировать данные полиномом 4-ой степени при помощи функций regress и interp, наборами полиномов второго порядка с помощью функций loess и interp.	
9	Решение обыкновенных дифференциальных уравнений в системе Mathcad. В процессе выполнени практической работы студент научится решать задачу Коши методом Эйлера, методом Рунге-Кутта, методом Адамса, используя функцию rkfixed; находить аналитическое (точное)	
4.0	решение ОДУ с помощью преобразований Лапласа.	
10	Спектральный анализ и синтез в системе Mathcad. В процессе выполнени практической работы студент научится разложению в ряд Фурье; выполнять классический и численный спектральный анализ и синтез; спектральный анализ и синтез функции f(t) с помощью БПФ; фильтрацию функции с помощью БПФ	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

ОСВ	оении дисциплины (модуля).	
№ п/п	Библиографическое описание	Место доступа
1	Белов, П. Г. Управление рисками, системный анализ и моделирование: учебник и практикум для вузов / П. Г. Белов. — Москва: Издательство Юрайт, 2023. — 721 с. — (Высшее образование). — ISBN 978-5-534-17939-2. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/534010 (дата обращения: 05.02.2024).	URL: https://urait.ru/bcode/534010 (дата обращения: 05.02.2024)
2	Никулин, К. С. Математическое моделирование в системе Mathcad : методические рекомендации по выполнению контрольных работ по курсу «Компьютерное инженерное моделирование» / К. С. Никулин. — Москва : Московская государственная академия водного транспорта, 2009. — 65 с. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/46717.html (дата обращения: 05.02.2024). — Режим доступа: для авторизир. пользователей	URL: https://www.iprbookshop.ru/46717.html (дата обращения: 05.02.2024). — Режим доступа: для авторизир. пользователей
3	Леонова, О. В. Основы научных исследований: учебное пособие / О. В. Леонова. — Москва: Московская государственная академия водного транспорта, 2015. — 70 с. — Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. — URL: https://www.iprbookshop.ru/46493.html (дата обращения: 05.02.2024). — Режим доступа: для	URL: https://www.iprbookshop.ru/46493.html (дата обращения: 05.02.2024). — Режим доступа: для авторизир. пользователей

	авторизир. пользователей	
4	Системный анализ: методы и средства	URL:
	измерений: библиографический указатель /	https://e.lanbook.com/book/195250
	составители Н. П. Седельникова, Л. Д. Вовк. —	(дата обращения: 18.03.2023). —
	Красноярск: СибГУ им. академика М. Ф.	Режим доступа: для авториз.
	Решетнёва, 2020. — 51 с. — Текст : электронный	пользователей.
	// Лань : электронно-библиотечная система. —	
5	Кораблев, Ю.А., Имитационное моделирование:	URL:https://book.ru/book/933531 (дата
	учебник / Ю.А. Кораблев. — Москва : КноРус,	обращения: 25.02.2023). — Текст:
	2020. — 145 c. — ISBN 978-5-406-07785-6. —	электронный.
6	Грибанова, Е.Б., Имитационное моделирование	URL:https://book.ru/book/936864 (дата
	экономических процессов. Практикум в Excel:	обращения: 25.02.2023). — Текст:
	учебное пособие / Е.Б. Грибанова, И.Н. Логвин.	электронный.
	— Москва : КноРус, 2020. — 227 с. —ISBN 978-	
	5-406-01581-0. —	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система издательства (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

Электронная научная система e.lanbook (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

Электронно-библиотечная система umczdt.ru http://umczdt.ru

Электронно-библиотечная система book.ru (http://book.ru/)

При организации обучения по дисциплине (модулю) с применением электронного обучения и дистанционных образовательных технологий необходим доступ каждого студента к информационным ресурсам – библиотечному фонду Университета, сетевым ресурсам и информационнотелекоммуникационной сети «Интернет».

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения практических занятий необходима специализированная компьютерная аудитория с компьютерами и программным обеспечением (MS Windows, MS Office, Matlab, Mathcad, PDF Reader) для выполнения компетенций по дисциплине.

В образовательном процессе, при проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут

применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, Zoom, WhatsApp и т.п

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сети INTERNET.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
- 3. Для практических занятий необходимы специализированные аудитории, оборудованные устройствами и приборами для проведения экспериментальных исследований технических систем и компьютерный класс для выполнения математического моделирования.

В случае проведении занятий с применением электронного обучения и дистанционных образовательных технологий необходимо наличие компьютерной техники, для организации коллективных и индивидуальных форм общения педагогических работников со студентами, посредством используемых средств коммуникации.

9. Форма промежуточной аттестации:

Дифференцированный зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Портовые подъемно-транспортные машины и робототехника» Академии водного транспорта

К.С. Никулин

Согласовано:

и.о. заведующего кафедрой УБТ

Е.Ю. Нарусова

Председатель учебно-методической

комиссии С.В. Володин