МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 27.03.04 Управление в технических системах, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование систем и процессов в устройствах электроснабжения

Направление подготовки: 27.03.04 Управление в технических системах

Направленность (профиль): Автоматизация управления системами

электроснабжения. Для студентов КНР

(ПОУ)

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

О подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 07.11.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения дисциплины является формирование у студентов необходимых знаний и умений для компьютерного моделирования различных режимов работы систем тягового электроснабжения, определения соответствия параметров системы реализуемым нагрузкам, с непрерывным использованием универсальных средств разработки приложений и профессиональных систем компьютерной математики.

Основной целью изучения учебной дисциплины является формирование у обучающегося компетенций в области теории электрификации железных дорог для следующих видов деятельности:

проектной;

эксплуатационной;

научно-исследовательской.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с видами деятельности):

проектной:

- проектирование систем тягового электроснабжения постоянного тока 3,3кB;
- проектирование систем тягового электроснабжения переменного тока 25кB и 2х25кB.

эксплуатационной:

проектирование систем усиления тягового электроснабжения:

- при росте грузопотока;
- при организации движения тяжеловесных поездов;
- при повышении скоростей движения грузовых и пассажирских поездов.

научно-исследовательской:

- исследование новых систем тягового электроснабжения повышенного напряжения;
- расчёт параметров системы тягового электроснабжения при внедрении новых видов электроподвижного состава с асинхронными тяговыми двигателями;
 - оценка эффективности рекуперации электрической энергии;
 - оценка влияния тяговый сети на линии сигнализации и связи.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Способен проводить экспертизу и разрабатывать проекты элементов, узлов и блоков средств автоматизации управления системами электроснабжения.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

сущность и основные принципы имитационного моделирования систем тягового электроснабжения;

Уметь:

моделировать процесс движения поезда;

Владеть:

способами и методами постановки и проведения экспериментов в виртуальной лаборатории.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No			
л/п	Тематика лекционных занятий / краткое содержание		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
1	Моделирование как этап в исследовании явлений и процессов. Рассматриваемые вопросы: Принципы построения структурно-функциональной схемы математической модели.		
2	Нагрузки, действующие на провода контактных сетей и линий.		
	Рассматриваемые вопросы: Моделирование тяговой подстанции постоянного тока. Проведение гармонического анализа выпрямленного напряжения тяговой подстанции.		
3	Сглаживающие устройства.		
	Рассматриваемые вопросы: Исследование влияния сглаживающего устройства (СУ) на гармонический состав выпрямленного напряжения тяговой подстанции.		
4	Моделирование быстродействующих фидерных выключателей тяговой		
	подстанции.		
	Рассматриваемые вопросы: Исследование процесса отключения тока короткого замыкания в тяговой сети.		
5	Моделирование диодного разрядного устройства (ДРУ) тяговой подстанции.		
	Рассматриваемые вопросы: Исследование влияния ДРУ на процесс отключения тока коротк замыкания в тяговой сети.		
6	Моделирование диодного разрядного устройства (УР-2) тяговой подстанции.		
	Рассматриваемые вопросы: Исследование влияния УР-2 на процесс отключения тока короткого замыкания в тяговой сети.		
7	Моделирование грузового электровоза ВЛ10у.		
	Рассматривемые вопросы: Исследование процесса кратковременной генерации тока электровоза при коротком замыкания в тяговой сети вблизи ЭПС.		
8	Моделирование системы электрической тяги 3,3кВ.		
	Рассматриваемые вопросы Исследование работы электрифицированной железной дороги в нормальном и аварийном режимах.		
9	Моделирование тяговой подстанции переменного тока.		
	Рассматриваемые вопросы: Исследование распределения токов нагрузки по фазам тягового трансформатора.		
10	Моделирование тягового трансформатора, выпрямительной установки и		
	сглаживающего устройства грузового электровоза ВЛ80с.		
	Рассматриваемые вопросы: Выпрямительная установка возбуждения электровоза от коммутационных перенапряжений.		

No			
п/п	Тематика лекционных занятий / краткое содержание		
11	Моделирование тягового двигателя пульсирующего тока НБ-418К6 электровоза		
	ВЛ80с.		
	Рассматриваемые вопросы: Исследование генераторного тока тяговых двигателей электровоза при		
	коротком замыкании на выпрямительной установке.		
12	Моделирование системы электрической тяги переменного тока 25кВ.		
	Рассматриваемые вопросы: Исследование работы электрифицированной железной дороги		
	переменного тока в нормальном и аварийном режимах.		
13	Имитационное моделирование системы электрической тяги постоянного тока		
	3,3кВ.		
	Рассматриваемые вопросы: Расчеты режимов и нагрузочной способности систем тягового		
	электроснабжения в фазных координатах. И сследование распределения токов нагрузки по фазам		
	тягового трансформатора. Моделирование быстродействующих фидерных выключателей тяговой		
	подстанции. Исследование процесса отключения тока короткого замыкания в тяговой сети.		
14	Имитационное моделирование системы электрической тяги переменного тока		
	25кВ.		
	Рассматриваемые вопроосы: Выполните сравнительный анализ двух систем электрической тяги пр		
	электрификации расчетного участка. Иследования режимов и показателей работы систем		
	электроснабжения. Структурная схема имитационной модели. Законы распределения интервалов		
15	между поездами.		
13	Применение методов линейного программирования для решения задач. Рассматриваемые вопросы:Выбор оптимальной конфигурации (трасс и сечений ЛЭП) системы		
	электроснабжения с помощью Excel и MathCAD.		
16			
	электроэнергетических системах.		
	Рассматриваемые вопросы: Обзор методов решения задачи оптимизации. Необходимые условия		
	оптимальности. Анализ прямых и двойственных переменных, новая классификация узлов.		
17	Классического метод оптимизации и метод Лагранжа.		
	Рассматриваемые вопросы:Выбор оптимальной мощности компенсирующих устройств с целью		
	минимизации потерь мощности и обеспечения нормируемого уровня напряжения в системе		
	электроснабжения.		
18	Применение методов нелинейного программирования.		
	Рассматриваемые вопросы: Решение задач нелинейного программирования методом		
	неопределённых множителей Лагранжа.		
19	Электрическая нагрузка: статические характеристики электрической нагрузки и		
	моделирование электрических нагрузок.		
	Рассмкатриваемые вопросы: Теоретические положения по компенсации реактивной мощности в		
	системах электроснабжения промышленных предприятий, рассматривается методика выбора		
	устройств компенсации реактивной мощности. Потребления активной и реактивной мощности от		
	напряжения и частоты, при медленных изменениях параметров электрического режима. Статические характеристики определенного состава смешанной нагрузки.		
20	Случайные величины в энергетике.		
20	Рассматриваемые вопросы: Непрерывные и дискретные случайные величины. Статистический		
	ряд. Законы распределения случайных величин, числовые характеристики случайных величин и их		
	свойства. Законы распределения вероятностей случайных величин, применяемые в энергетике.		
21	Линейные модели регрессий		
	Рассматриваемые вопросы: Оценка параметров регрессии. Прогнозирование электрических		
	нагрузок на основе регрессионных моделей.		
	•		

№ п/п	Тематика лекционных занятий / краткое содержание
11/11	
22	Проведение научных исследований.
	Рассматриваемые вопросы: Классификация, типы и задачи эксперимента.
	Методика и программа эксперимента. Содержание и разработка методики эксперимента.
	Планирование эксперимента и основные элементы плана.
23	Обработка и анализ экспериментальных результатов.
	Рассматриваемые вопросы: Способы представления результатов эксперимента. Понятие
	погрешности эксперимента.
24	Моделирование объектов электроэнергетики.
	Рассматриваемые вопросы: Математическое моделирования технических объектов и физических
	процессов при решении инженерных задач в области электроэнергетики.

4.2. Занятия семинарского типа.

Практические занятия

	практические запития		
№ п/п	Тематика практических занятий/краткое содержание		
1	Тяговый трансформатор.		
	Исследование распределения токов нагрузки по фазам тягового трансформатора		
2	Короткое замыкание в тяговой сети.		
	Исследование влияния ДРУ на процесс отключения тока короткого замыкания в тяговой сети.		
3	Генерация тока электровоза.		
	Исследование процесса кратковременной генерации тока электровоза при коротком замыкания в тяговой сети вблизи ЭПС		
4	Режымв работы электрифицированной железной дороги.		
	Исследование работы электрифицированной железной дороги в нормальном и аварийном режимах.		
5	Выпрямительные установки.		
	Исследование генераторного тока тяговых двигателей электровоза при коротком замыкании на		
	выпрямительной установке		
6	Моделирование процессов в заземляющих устройств.		
	Анализ работы заземляющих устройств электроустановок в динамических и импульсных режимах		
7	Моделирование тепловых процессов при прокладке кабеля.		
	Оценка нагрева кабелей в зависимости от места расположения в группе и влияния этого фактора на		
	допустимую нагрузку кабеля.		
8	Моделирование поверхностного эффекта в проводах и на шинах.		
	Оценка использования полезного сечения токоведущего проводника в зависимости от его		
	расположения относительно проводников других фаз.		
9	Модели линий электропередач переменного тока.		
	Виды физических моделей. Возможности моделей. Используемое оборудование и приборы.		
10	Учет влияния погодных условий на коронирование длиний электропередач		
	переменного тока.		
	Аппроксимация кривых потерь на корону в зависимости от погодных условий. Вероятностный учет		
	различия погодных условий по трассе линии.		
11	Оптимизация систем электроснабжения.		
	Меры для обеспечения успешного внедрения комплекса мер по оптимизации систем		
	энергоснабжения. Методика оптимизации эксплуатационных режимов систем электроснабжения.		
12	Моделирование как метод научного исследования.		
	Модели используются для изучения любых объектов (явлений, процессов), решения самых		

№ п/п	Тематика практических занятий/краткое содержание
	разнообразных научных задач. Построение математических моделей, планирование и проведение
	экспериментов, анализа экспериментальных данных и оптимизации исследуемого объекта.

4.3. Самостоятельная работа обучающихся.

№	Вил самостоятельной работы	
Π/Π	Вид самостоятельной работы	
1	выполнените курсового проекта	
2	подготовка к лабораторным работам	
3	подготовка к практическим занятиям	
4	работа с лекционным материалом и литературой	
5	подготовка к текущему контролю и промежуточной аттестации	
6	Подготовка к промежуточной аттестации.	
7	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

- 1 Моделирование тяговой подстанции постоянного тока.
- 2 Моделирование быстродействующих фидерных выключателей тяговой подстанции.
- 3 Моделирование диодного разрядного устройства (ДРУ) тяговой подстанции.

Определение коэффициентов трансформации величин погрешностей трансформаторов тока.

- 4 Моделирование диодного разрядного устройства (УР-2) тяговой подстанции. Исследование влияния УР-2 на процесс отключения тока короткого замыкания в тяговой сети;
 - 5 Моделирование грузового электровоза ВЛ10у.;
 - 6 Моделирование системы электрической тяги 3,3кВ.
 - 7 Моделирование тяговой подстанции переменного тока.
- 8 Моделирование тягового трансформатора, выпрямительной установки и сглаживающего устройства грузового электровоза ВЛ80с.
- 9 Моделирование тягового двигателя пульсирующего тока НБ-418К6 электровоза ВЛ80с. .
- 10 Имитационное моделирование системы электрической тяги постоянного тока 3,3кВ.
- 11 Имитационное моделирование системы электрической тяги переменного тока 25кВ.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	,	
№ п/п	Библиографическое описание	Место доступа
1	Моделирование электротехнических устройств в MatLab,	электронное издание
	SimPowerSystem и Simuink. И.В. Черных 2008	
2	Simulink 5/6/7 В.П. Дьяконов 2008	электронное издание
3	конспект лекций по дисциплине "" Агдреев В.В.	электронное издание
	Методическое пособие МИИТ, 2014	
4	Введение в математические основы САПР Д. М. Ушаков.	Электронный ресурс
	Учебное пособие ДМК Пресс, 2011	
5	Вычислительные методы А. А. Амосов, Н. В. Копченова,	Электронный ресурс
	Ю. А. Дубинский Учебное пособие Лань, 2014	
6	Теория вероятностей и математическая статистика А. А.	Электронный ресурс
	Туганбаев, В. Г. Крупин Учебное пособие Лань, 2011	
7	Компьютерное моделирование в системе Mathcad B.A.	научно-техническая
	Охорзин М.: Финансы и статистика, 2006	библиотека, 3210, чз.2
1	Электроснабжение электрифицированных железных	
	дорог. К.Г. Марквардт. 1982	
2	Методы разработки алгоритмов и программ при	
	использовании средств вычислительной техники для	
	решения задач проектирования и эксплуатации систем	
	электроснабжения электрифицированных железных	
	дорог. Учебное пособие. В.В. Андреев 1984	
3	Вычислительная и микропроцессорная техника в	
	устройствах электрических железных дорог. Учебник для	
	студентов вузов железнодорожного транспорта. Под	
	редакцией Г.Г. Марквардта. 1989	
4	Математическое моделирование систем и процессов Н. В.	Электронный ресурс
	Голубева. Учебно-методическое издание Лань, 2013	
5	Компьютерное моделирование физических процессов в	Электронный ресурс
	пакете MATLAB С. В. Поршнев Учебное пособие Лань,	
	2011	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://rgd.ru - сайт ОАО «РЖД».

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)

Российская Государственная Библиотека http://www.rsl.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Windows, Microsoft Office, Microsoft Security Essentials, Embarcadero RAD Studio XE2 Professional Concurrent AppWave

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Меловая (маркерная) доска или проектор персональные компьютеры

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электроэнергетика транспорта» В.В. Андреев

Согласовано:

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин