МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.01 Технология транспортных процессов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование транспортных потоков, базовый уровень

Направление подготовки: 23.04.01 Технология транспортных процессов

Направленность (профиль): Транспортные системы агломераций

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 1174807

Подписал: руководитель образовательной программы Барышев Леонид Михайлович

Дата: 04.07.2025

1. Общие сведения о дисциплине (модуле).

Дисциплина нацелена на формирование у студентов системы научных и профессиональных знаний в области разработки и применения транспортных моделей для анализа транспортной сети и разработки предложений для решения транспортных проблем: оптимизация движения транспортных и пешеходных потоков, работы общественного транспорта, организация дорожного движения, оптимизация работы светофорных объектов, а также обоснования инвестиций в строительство транспортной инфраструктуры.

Целью освоения дисциплины «Моделирование транспортных потоков. Базовый уровень» является: формирование у студентов теоретических знаний и практических навыков в области моделирования транспортных потоков, необходимых для анализа и оптимизации работы городских транспортных систем.

Задачи освоения дисциплины "Моделирование транспортных потоков. Базовый уровень":

- Формирование теоретических основ
- Освоение инструментов моделирования
- Анализ транспортных систем
- Оптимизация транспортных процессов
- Обоснование решений и инвестиций
- Развитие профессиональных компетенций

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен применять инструментарий формализации научнотехнических задач, использовать прикладное программное обеспечение для моделирования и проектирования систем и процессов;
- **ПК-1** Способен к выполнению отдельных работ при разработке проектов развития транспортной системы агломераций;
- **ПК-2** Способен разрабатывать предложения по развитию транспортной системы агломерации;
- **УК-2** Способен управлять проектом на всех этапах его жизненного цикла.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные принципы, теоретические и методические основы разработки и применения транспортных моделей, функциональные возможности моделирования пешеходных, пассажирских и транспортных потоков;
- цели и задачи моделирования при разработке мероприятий и документации по городскому транспортному планированию и организации дорожного движения в рамках проектов организации дорожного движения, комплексных схем организации дорожного движения, включая основные типы математических моделей параметров дорожного движения (транспортные модели), их свойства и рекомендуемые области применения;
- функциональные возможности программного обеспечения по моделированию дорожного движения, требования к транспортным моделям, уровни моделирования дорожного движения, их специфику, оценочные показатели эффективности организации дорожного движения, получаемые при моделировании, особенности разработки транспортных моделей.
- международный опыт и лучшие практики в области транспортного моделирования (например, руководства ITE, TRB, национальные стандарты зарубежных стран).

Уметь:

- осуществлять подготовку задания по проведению моделирования транспортных потоков и использовать результаты моделирования для разработки и обоснования решений транспортного планирования, мероприятий по организации и обеспечению безопасности движения транспортных и пешеходных потоков;
- применять транспортные модели для прогнозирования условий дорожного движения и обоснования предлагаемых решений транспортного планирования, мероприятий по организации дорожного движения;
- использовать современный инструментарий импорта (экспорта) файлов систем автоматизированного проектирования, геоинформационных систем, растровых изображений для формирования элементов транспортной модели;
- выполнять анализ проектных решений на основе результатов моделирования с использованием параметров эффективности организации дорожного движения, а также разрабатывать по результатам моделирования дорожного движения рекомендации по внесению изменений в проектные решения, по разработке альтернативных вариантов проектных решений;
- оценивать экономические, социальные и экологические последствия реализации разрабатываемых мероприятий в сфере организации дорожного

движения и городского транспортного планирования посредством применения транспортных моделей.

Владеть:

- современными программно-моделирующими комплексами при решении задач городского транспортного планирования и организации дорожного движения, а также разрабатывать транспортные модели различных уровней;
- навыками анализа и интерпретации результатов моделирования для принятия обоснованных решений в сфере транспортной политики и управления движением;
- умением интегрировать данные о транспортных потоках и характеристиках инфраструктуры, используя современные методы сбора и обработки данных, включая технологии больших данных и геоинформационные системы (ГИС);
- способностью разрабатывать сценарии и прогнозы изменения транспортных потоков в зависимости от различных факторов, таких как изменение инфраструктуры, внедрение новых технологий или изменение политики в области транспорта;
- знанием современных тенденций и инновационных подходов в области моделирования транспортных систем, включая использование интеллектуальных транспортных систем (ИТС) и концепций устойчивого развития;
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	42	42
В том числе:		
Занятия лекционного типа	14	14
Занятия семинарского типа	28	28

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 66 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No॒	T		
п/п	Тематика лекционных занятий / краткое содержание		
1	Цели и задачи транспортного моделирования.		
	Рассматриваемые вопросы:		
	- сновные термины и определения, цели и задачи транспортного моделирования;		
	- транспортное моделирование в управлении транспортной системой. Роль транспортных моделей		
	при планировании и оценке проектов;		
	- транспортные модели и особенности их применения в городском транспортном планировани		
2	Выбор методологии и классификация моделей		
	Рассматриваемые вопросы:		
	- макроскопические и микроскопические модели транспортных потоков. Аналитические и		
	имитационные математические модели, их достоинства и недостатки;		
	- использование транспортной модели в структуре управления городом.		
3	Этапы разработки транспортной модели		
	Рассматриваемые вопросы:		
	- Алгоритм построения модели, структура четырехшаговой модели, транспортное районирование и		
	последовательность разработки.		
4	Исходные данные и методы сбора информации		
	Рассматриваемые вопросы:		
	- источники и необходимые данные для построения транспортной модели, а также методы их сбора.		
5	Моделирование транспортного спроса и предложения		
	Рассматриваемые вопросы:		
	- Создание моделей транспортного спроса и предложения, учет влияния индуцированного спроса, а		
	также распределение поездок на различных видах транспорта.		
6	Калибровка, оценка адекватности и применение моделей		
	Рассматриваемые вопросы:		
	- Анализ результатов моделирования, цели калибровки, валидация моделей, использование моделей		
	в организации дорожного движения и рекомендации по их применению в документации по		
	транспортному планированию.		

No	Тематика лекционных занятий / краткое содержание	
Π/Π		
7	Моделирование устойчивого городского транспорта: экологические и социальные	
	аспекты	
	Рассматриваемые вопросы:	
	Принципы устойчивого транспортного планирования: баланс между мобильностью, экологией и	
	экономикой.	
	Методы оценки экологического воздействия: моделирование выбросов СО?, шумового загрязнения	
	и других факторов.	
	Социальная справедливость в транспортных системах: доступность транспорта для разных групп	
	населения, "транспортная бедность".	
	Сценарии развития: моделирование перехода к низкоуглеродным видам транспорта	
	(велоинфраструктура, электромобили, ОТ).	
	Инструменты: интеграция экологических и социальных индикаторов в транспортные модели	
	(например, в PTV Visum, Aimsun).	

4.2. Занятия семинарского типа.

Практические занятия

	практи теские запития		
№ п/п	Тематика практических занятий/краткое содержание		
1	Изучение существующих методов моделирования		
1	Рассматриваемые вопросы:		
	- макроскопические модели транспортного потока;		
	- макроскопические модели транспортного потока; - микроскопические модели транспортного потока;		
	- микроскопические модели транспортного потока, - модель «Следование за лидером». Сравнение моделей.		
2			
2	Ипользование программы имитационного моделирования с помощью		
	программного обеспечения «Aimsun».		
	Рассматриваемые вопросы:		
	- процесс имитационного моделирования и этапы имитационного моделирования с помоющью		
	программного обеспечения «Aimsun»;		
	- динамическое прогнозирование будущих условий трафика на основе текущего состояния сети и		
	для оценки реагирования на инциденты или стратегий управления трафиком.		
3	Макроскопическая транспортная модель в PTV Visum		
	Рассматриваемые вопросы:		
	- PTV Visum;		
	- основные элементы интерфейса программы и ее функциональными возможностями.		
4	Практическое применение имитационного моделирования при проектировании и		
	Рассматриваемые вопросы:		
	- особенности практического применения имитационного моделирования при проектировании и		
	эксплуатации ИТС;		
	- разработка комплекса имитации движения участников дорожного движения;		
	- разбор зарубежного опыта использования моделирования и сбора данных при проектировании		
	интеллектуальных транспортных систем;		
	- моделирование концентрации вредных веществ.		
5	Создание имитационной транспортной модели на участке пересечения улиц		
	Рассматриваемые вопросы:		
	- требования к имитационной модели: корректно отмасштабированный фон; дорожная сеть,		
	отражающая реальную геометрию участка; заданное движение транспортного потока,		
	соответствующее существующей ОДД; остановки и маршруты общественного транспорта,		
	соответствующие существующей ОДД; светофорное регулирование, соответствующее		

No		
п/п	Тематика практических занятий/краткое содержание	
	существующей ОДД; пешеходное движение, соответствующее движению по реальной УДС участка.	
6	Имитационное моделирование конфликтных ситуаций и оценка пропускной	
	способности автомобильных дорог	
	Рассматриваемые вопросы:	
	- методология оценки проектных решений по ОДД методом моделирования конфликтных ситуаций;	
	- оценка пропускной способности и уровней загрузки автомобильных дорог методом	
	компьютерного моделирования транспортных потоков.	
7	Анализ данных транспортных потоков с помощью Python	
	Рассматриваемые вопросы:	
	Основы обработки данных о транспортных потоках с использованием Python (Pandas, NumPy);	
	Визуализация данных (Matplotlib, Seaborn) для анализа интенсивности движения.	
	Построение простых прогнозных моделей (регрессия, временные ряды).	
	Практика: Обработка реальных данных с детекторов транспорта, построение графиков	
	загруженности дорог.	
8	Моделирование общественного транспорта в SUMO	
	Особенности моделирования автобусных и трамвайных маршрутов.	
	Настройка расписаний и остановочных пунктов.	
	Анализ влияния общественного транспорта на общий трафик.	
	Практика: Создание модели маршрута с учетом расписания и пассажиропотока, оценка задержек.	
9	Оптимизация светофорного регулирования в PTV Vissim	
	Рассматриваемые вопросы:	
	Принципы адаптивного управления светофорами.	
	Настройка фаз и циклов светофорного регулирования.	
	Оценка эффективности различных стратегий (фиксированные планы vs. адаптивные системы).	
	Практика: Моделирование перекрестка, подбор оптимальных режимов работы светофоров.	
10	Моделирование пешеходных потоков (AnyLogic / Viswalk)	
	Рассматриваемые вопросы:	
	Особенности поведения пешеходов в транспортных узлах.	
	Методы оценки пропускной способности пешеходных зон.	
	Влияние пешеходных потоков на транспортную систему.	
	Практика: Моделирование пересечений в районе ж/д вокзала или торгового центра, анализ узких	
	мест.	
11	Оценка экологического воздействия транспорта с помощью моделей	
	Рассматриваемые вопросы:	
	Методы расчета выбросов СО? и других загрязняющих веществ.	
	Влияние организации дорожного движения на экологию.	
	Использование моделей для оценки "зеленых" сценариев.	
	Практика: Расчет уровня выбросов для разных сценариев (введение платных парковок, развитие	
	OT).	
12	Разбор кейсов: моделирование транспортных систем мегаполисов	
	Рассматриваемые вопросы:	
	Анализ успешных примеров моделирования (Лондон, Сингапур, Москва).	
	Ошибки и ограничения при проектировании на основе моделей.	
	Современные тренды (Big Data, ИИ в управлении трафиком).	
	Практика: Групповой проект: предложить меры для улучшения транспортной ситуации в заданном	
	районе на основе моделирования.	
13	Применение искусственного интеллекта в транспортном моделировании	
	Рассматриваемые вопросы:	
	Нейросетевые методы прогнозирования транспортных потоков;	

№ п/п	Тематика практических занятий/краткое содержание
	Машинное обучение для оптимизации маршрутов общественного транспорта;
	АІ-алгоритмы для управления светофорными объектами;
	Анализ больших данных транспортных систем с помощью ИИ;
	Примеры внедрения АІ-решений в городских транспортных системах.
14	Моделирование воздействия транспортных систем на городскую среду
	Рассматриваемые вопросы:
	Оценка шумового воздействия транспортных потоков;
	Моделирование загрязнения воздуха от автотранспорта;
	Влияние транспортной инфраструктуры на городское планирование;
	Методы снижения негативного воздействия транспорта;
	Интеграция экологических показателей в транспортные модели.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение учебной литературы и интернет-источников
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Моделирование транспортно-технологических систем: учебное пособие / составитель С. М. Каратун. — Тюмень: ТИУ, 2018. — 88 с. — ISBN 978-5-9961-1629-4.	https://e.lanbook.com/book/138244
2	Косолапов, А. В. Моделирование дорожного движения : учебное пособие / А. В. Косолапов. — Кемерово : КузГТУ имени Т.Ф. Горбачева, 2017. — 128 с. — ISBN 978-5-906969-16-3	https://e.lanbook.com/book/105411
3	Горбачев, А. М. Моделирование транспортных систем в среде AnyLogic : учебное пособие / А. М. Горбачев. — Санкт-Петербург : ПГУПС, 2020. — 47 с. — ISBN 978-5-7641-1482-8.	https://e.lanbook.com/book/222527

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Система автоматизированного проектирования Autocad.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. Высшей инженерной

школы А.А. Попов

Согласовано:

Директор Б.В. Игольников

Руководитель образовательной

программы Л.М. Барышев

Председатель учебно-методической

д.В. Паринов