МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование электромеханических систем высокоскоростного подвижного состава

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 28.05.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Моделирование электромеханических систем высокоскоростного подвижного состава» является:

- получение знаний и приобретение навыков практической работы с пакетом MatLab и приложением Simulink для построения математических моделей электрических и механических систем высокоскоростного подвижного состава с целью исследования переходных электромагнитных и механических процессов.

Задачей освоения учебной дисциплины «Моделирование электромеханических систем высокоскоростного подвижного состава» является:

- формирование логической связи между естественно-научными и специальными дисциплинами.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем подвижного состава высокоскоростного наземного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

Создавать математические модели электромеханических систем электроподвижного состава в пакетеMatLab и приложенииSimulink

Владеть:

навыками практической работы с пакетом MatLab и приложением Simulink при создании и построении математических моделей электромеханических систем электроподвижного состава

Знать:

- основные принципы построения математических моделей электромеханических систем электроподвижного состава,
 - основные принципы работы с пакетом MatLab и расширением Simulink
 - 3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тунгуунобунуу оондтуй	Количество часов	
Тип учебных занятий		Семестр №6
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 24 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание	
1	Структура пакета Matlab, содержание основных библиотек пакета. Особенности программирования.	
	Возможности и особенности пакета Matlab. Работа с библиотеками пакета. Рабочий стол пакета. Окна Command Window, Workspace, History	
2	Структура и набор библиотек приложения Simulink.	
	Структура и набор элементов в библиотеках приложения Simulink, Simscape, SimPowerSystem	
3	Особенности создания простейших моделей в приложении Simulink.	

$N_{\underline{0}}$	Томотичес помичения и заметий / иполиса со попуские		
Π/Π	Тематика лекционных занятий / краткое содержание		
	Создание моделей, реализующих простейшие математические и логические операции с помощью библиотеки Simulink.		
4	Структура библиотеки SimPowerSystem приложения Simulink		
	Набор и свойства элементов библиотеки SimPowerSystem: Elements, Electrical Sources, Machines, PowerElectronics.		
5	Создание простейших моделей электрических схем высокоскоростного подвижного		
	состава и исследование переходных процессов.		
	Модель двигателя, модель пуска двигателя, переходные процессы при пуске.		
6	Создание моделей полупроводниковых преобразователей высокоскоростного		
	подвижного состава		
	Создание моделей неуправляемых и управляемых полупроводниковых преобразователей различных		
	схем выпрямления (однополупериодная, двухполупериодная, мостовая).		
7	Создание моделей электромеханических систем высокоскоростного подвижного		
	состава		
	Создание модели высокоскоростного подвижного состава для исследования переходных процессов в		
	силовой цепи при изменении скорости движения		

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наименование лабораторных работ / краткое содержание			
Π/Π	тальногование насораторным расот у праткое содержание			
1	Структура пакета Matlab, содержание основных библиотек пакета. Особенности			
	программирования			
	Возможности и особенности пакета Matlab. Работа с библиотеками пакета. Рабочий стол пакета. Ок Command Window, Workspace, History			
2	` · · · ·			
2	Структура и набор библиотек приложения Simulink			
	Структура и набор элементов в библиотеках приложения Simulink, Simscape, SimPowerSystem.			
3	Особенности создания простейших моделей в приложении Simulink			
	Создание моделей, реализующих простейшие математические и логические операции с помощью			
	библиотеки Simulink.			
4	Особенности создания простейших моделей в приложении Simulink			
	Модель двигателя, модель пуска двигателя, переходные процессы при пуске.			
5	Создание простейших моделей электрических схем постоянного тока и исследование			
	переходных процессов			
	Создание моделей неуправляемых и управляемых полупроводниковых преобразователей различных			
	схем выпрямления (однополупериодная, двухполупериодная, мостовая).			
6	Создание простейших моделей электрических схем переменного тока и исследовани			
	переходных процессов			
	Создание моделей высокоскоростного подвижного состава переменного тока, включающих			
	трансформатор, выпрямитель, двигатель, сглаживающий реактор			
7	Создание моделей электромеханических систем электроподвижного состава.			
	Создание модели высокоскоростного подвижного состава для исследования переходных процессов в			
	силовой цепи при изменении скорости движения, используя уравнение движения поезда.			
8	Обработка и сохранение результатов моделирования.			
	Сохранение результатов в файл, Workspace. Создание m-файлов для построения диаграмм перехо			
	процессов и сохранения результатов в формате рисунков.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам.
2	Работа с литературой.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	осини дисциплины (модули).	
№ п/п	Библиографическое описание	Место доступа
1	Теория электрической тяги В.Е. Розенфельд, И.П.	НТБ (ЭЭ); НТБ (уч.3); НТБ
	Исаев, Н.Н. Сидоров, М.И. Озеров; Под ред. И.П.	(фб.); НТБ (чз.1); НТБ (чз.2);
	Исаева Однотомное издание Транспорт, 1995	НТБ (чз.4)
2	Механическая часть тягового подвижного состава	НТБ (уч.3); НТБ (уч.6); НТБ
	И.В. Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред.	(фб.)
	И.В. Бирюкова Однотомное издание Транспорт, 1992	
3	Дьяконов, В. П. MATLAB R2006/2007/2008 +	https://e.lanbook.com/book/13774
	Simulink 5/6/7. Основы применения / В. П. Дьяконов.	(дата обращения: 17.05.2025).
	— 2-е изд. — Москва : СОЛОН-Пресс, 2008. — 800 с.	— Режим доступа: для авториз.
	— ISBN 978-5-91359-042-8. — Текст : электронный //	пользователей
	Лань: электронно-библиотечная система	
4	Дьяконов, В. П. Simulink 5/6/7: Самоучитель:	https://e.lanbook.com/book/1177
	самоучитель / В. П. Дьяконов. — Москва : ДМК	(дата обращения: 17.05.2025).
	Пресс, 2009. — 784 с. — ISBN 978-5-94074-423-8. —	— Режим доступа: для авториз.
	Текст: электронный // Лань: электронно-	пользователей.
	библиотечная система	
5	Черных, И. В. Моделирование электротехнических	https://e.lanbook.com/book/1175
	устройств в MATLAB. SimPowerSystems и Simulink /	(дата обращения: 17.05.2025).
	И. В. Черных. — Москва : ДМК Пресс, 2007. — 288 с.	— Режим доступа: для авториз.
	— ISBN 5-94074-395-1. — Текст : электронный //	пользователей
	Лань: электронно-библиотечная система	
1	Как устроен и работает электровоз Н.И. Сидоров,	НТБ (уч.1); НТБ (уч.3); НТБ
	Н.Н. Сидорова Однотомное издание Транспорт, 1988	(уч.4); НТБ (уч.6)
2	Электроподвижной состав с асинхронными тяговыми	НТБ (ЭЭ); НТБ (уч.3); НТБ
	двигателями Н.А. Ротанов, А.С. Курбасов, Ю.Г.	(уч.6); НТБ (фб.)
	Быков, В.В. Литовченко; Под ред. Н.А. Ротанова	
	Однотомное издание Транспорт, 1991	
3	Проектирование систем управления	НТБ (уч.3); НТБ (уч.6); НТБ
	электроподвижным составом Н.А. Ротанов, Д.Д.	(фб.)
•		

Захарченко, А.В. Плакс и др.; Под ред. Н.А. Ротанова Однотомное издание Транспорт, 1986

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- единая коллекция цифровых образовательных ресурсов (http://window.edu.ru);
 - научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
 - электронная библиотечная система ЭБС Юрайт (http://urait.ru);
 - электронная библиотечная система ЭБС Лань (http://lanbook.ru)
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для выполнения курсового проекта необходимо использовать в расчетах программное обеспечение Excel или Mathcad

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения практических занятий необходимо иметь: стенд с электрическими машинами, одна из которых работает в режиме двигателя; компьютерный имитационный стенд кабины машиниста

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электропоезда и локомотивы»

А.А. Чучин

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин