МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Моделирование электромеханических систем электроподвижного состава

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 15.09.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Моделирование электромеханических систем электроподвижного состава» являются:

- получение знаний и приобретение навыков практической работы с пакетом MatLab и приложением Simulink для построения математических моделей электрических и механических систем электроподвижного состава

Задачами освоения учебной дисциплины «Моделирование электромеханических систем электроподвижного состава» являются:

- освоение исследования переходных электромагнитных и механических процессов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем тягового подвижного состава.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

Создавать математические модели электромеханических систем электроподвижного состава в пакетеMatLab и приложенииSimulink

Владеть:

навыками практической работы с пакетом MatLab и приложением Simulink при создании и построении математических моделей электромеханических систем электроподвижного состава

Знать:

- основные принципы построения математических моделей электромеханических систем электроподвижного состава,
 - основные принципы работы с пакетом MatLab и расширением Simulink
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №6
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 24 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ п/п	Тематика лекционных занятий / краткое содержание		
1	Структура пакета Matlab, содержание основных библиотек пакета. Особенности		
	программирования.		
	Возможности и особенности пакета Matlab. Работа с библиотеками пакета. Рабочий стол пакета. Окна		
	Command Window, Workspace, History		
2	Структура и набор библиотек приложения Simulink.		
	Структура и набор элементов в библиотеках приложения Simulink, Simscape, SimPowerSystem		
3	Особенности создания простейших моделей в приложении Simulink.		
	Создание моделей, реализующих простейшие математические и логические операции с помощью		
	библиотеки Simulink		
4	Структура библиотеки SimPowerSystem приложения Simulink		
	Набор и свойства элементов библиотеки SimPowerSystem: Elements, Electrical Sources, Machines,		
	PowerElectronics		

№ п/п	Тематика лекционных занятий / краткое содержание		
5	Создание простейших моделей электрических схем электроподвижного состава и		
	исследование переходных процессов.		
	Модель двигателя, модель реостатного пуска ЭПС, переходные процессы при коммутации		
	контакторов		
6	Создание моделей полупроводниковых преобразователей электроподвижного		
	состава		
	Создание моделей неуправляемых и управляемых полупроводниковых преобразователей различных		
	схем выпрямления (однополупериодная, двухполупериодная, мостовая)		
7	Создание моделей электромеханических систем электроподвижного состава		
	Создание модели ЭПС для исследования переходных процессов в силовой цепи при изменении		
	скорости движения		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание			
1	Структура пакета Matlab, содержание основных библиотек пакета. Особенности			
	программирования			
Возможности и особенности пакета Matlab. Работа с библиотеками пакета. Рабочий ст				
	Command Window, Workspace, History			
2	Структура и набор библиотек приложения Simulink			
	Структура и набор элементов в библиотеках приложения Simulink, Simscape, SimPowerSystem			
3	Особенности создания простейших моделей в приложении Simulink			
	Создание моделей, реализующих простейшие математические и логические операции с помощью библиотеки Simulink			
4	Особенности создания простейших моделей в приложении Simulink			
_	Модель двигателя, модель реостатного пуска ЭПС, переходные процессы при коммутации			
	контакторов			
5	-			
	переходных процессов			
	Создание моделей неуправляемых и управляемых полупроводниковых преобразователей различных			
	схем выпрямления (однополупериодная, двухполупериодная, мостовая)			
6	Создание простейших моделей электрических схем переменного тока и исследование			
	переходных процессов			
	Создание моделей ЭПС переменного тока, включающих трансформатор, выпрямитель, двигатель,			
	сглаживающий реактор			
7	Создание моделей электромеханических систем электроподвижного состава.			
	Создание модели ЭПС для исследования переходных процессов в силовой цепи при изменении			
	скорости движения, используя уравнение движения поезда			
8	Обработка и сохранение результатов моделирования.			
	Сохранение результатов в файл, Workspace. Создание m-файлов для построения диаграмм переходных			
	процессов и сохранения результатов в формате рисунков			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам.
2	Подготовка к промежуточной аттестации.
3	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Дьяконов, В. П. Simulink 5/6/7: Самоучитель: самоучитель / В. П. Дьяконов. — Москва: ДМК Пресс, 2009. — 784 с. — ISBN 978-5-94074-423-8. — Текст: электронный // Лань: электронно-	https://e.lanbook.com/book/1177 (дата обращения: 17.05.2025). — Режим доступа: для авториз. пользователей
	библиотечная система	
2	Черных, И. В. Моделирование электротехнических устройств в MATLAB. SimPowerSystems и Simulink / И. В. Черных. — Москва : ДМК Пресс, 2007. — 288 с. — ISBN 5-94074-395-1. — Текст : электронный // Лань : электронно-библиотечная система	https://e.lanbook.com/book/1175 (дата обращения: 17.05.2025). — Режим доступа: для авториз. пользователей

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- единая коллекция цифровых образовательных ресурсов (http://window.edu.ru);
 - научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
 - электронная библиотечная система ЭБС Юрайт (http://urait.ru);
 - электронная библиотечная система ЭБС Лань (http://lanbook.ru)
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для выполнения курсового проекта необходимо использовать в расчетах программное обеспечение Excel или Mathcad

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения практических занятий необходимо иметь: стенд с

электрическими машинами, одна из которых работает в режиме двигателя; компьютерный имитационный стенд кабины машиниста

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры

«Электропоезда и локомотивы» А.А. Чучин

Согласовано:

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин