МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Навигация и управление перемещением

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Автоматизация и роботизация

технологических процессов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: заведующий кафедрой Григорьев Павел

Александрович

Дата: 01.06.2025

1. Общие сведения о дисциплине (модуле).

Целью изучения дисциплины (модуля) является:

- формирование компетенций в области проектирования, программирования и оптимизации систем навигации и управления движением робототехнических комплексов;
- освоение основных технологических средств для осуществления ориентации роботов в пространстве.

Задачами дисциплины (модуля) являются:

- получение комплексного представления о методах навигации роботов: от классических (SLAM, визуальная одометрия) до современных (ИИ-ориентированные подходы);
- формирование навыков работы с программными комплексами (ROS, Gazebo, MATLAB) для моделирования и реализации навигационных систем;
- формирование требований к аппаратной части (лидары, IMU, камеры) и программному обеспечению (алгоритмы PID, MPC, RRT*) для промышленных робототехнических комплексов;
 - изучение современных тенденций в области навигации.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-11** Способен разрабатывать и применять алгоритмы и современные цифровые программные методы расчетов и проектирования отдельных устройств и подсистем мехатронных и робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники в соответствии с техническим заданием, разрабатывать цифровые алгоритмы и программы управления робототехнических систем;
- **ОПК-12** Способен участвовать в монтаже, наладке, настройке и сдаче в эксплуатацию опытных образцов мехатронных и робототехнических систем, их подсистем и отдельных модулей;
- **ПК-2** Способен производить комплексную настройку мехатронных и робототехнических систем, используя программное обеспечение котороллеров и управляющих ЭВМ, их систем управления .

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Владеть:

- навыками использования программного обеспечения ROS, Gazebo, MATLAB/Simulink;
 - навыками применения OpenCV, PCL (Point Cloud Library);
 - навыками калибровки сенсоров.

Знать:

- методы локализации и картографирования (SLAM, фильтр Калмана);
- алгоритмы управления: PID, MPC, обратная кинематика;
- типы сенсоров: лидары, IMU, камеры.

Уметь:

- настраивать навигационные системы для мобильных роботов;
- реализовывать алгоритмы управления в симуляторах и на реальном железе;
 - анализировать и устранять ошибки в системах движения.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No			
п/п	Тематика лекционных занятий / краткое содержание		
1	Введение в навигацию роботов		
	Рассматриваемые вопросы:		
	- Классификация систем навигации: абсолютная, относительная, локальная, глобальная;		
	- Примеры применения: AGV, дроны, подводные роботы.		
	- Ключевые проблемы навигации: шумы сенсоров, динамическая среда.		
2	Обратная кинематика манипуляторов во взаимодействии с подвижными объектами		
	Рассматриваемые вопросы:		
	- Решение обратной задачи для 6-осевых роботов.		
	- Методы оптимизации: псевдообратная матрица Якоби.		
	- Примеры в ROS MoveIt и MATLAB.		
3	Сенсоры для навигации.		
	Рассматриваемые вопросы:		
	- Принципы работы лидаров, камер, IMU, GPS.		
	- Сравнение точности и надежности сенсоров.		
	- Калибровка и синхронизация данных от разных сенсоров.		
4	Локализация и SLAM		
	Рассматриваемые вопросы:		
	- Алгоритмы SLAM: gmapping, Cartographer, ORB-SLAM3.		
	- Роль ROS в реализации SLAM-систем.		
	- Проблема дрейфа в одометрии и методы её компенсации.		
5	Фильтр Калмана и его модификации		
	Рассматриваемые вопросы:		
	- Базовый фильтр Калмана: математическая модель.		
	- Расширенный (EKF) и ансамблевый (EnKF) фильтры.		
	- Применение в задачах локализации мобильных роботов.		
6	Управление движением мобильных роботов		
	Рассматриваемые вопросы:		
	- Кинематика дифференциального привода.		
	- Алгоритмы следования по траектории: Pure Pursuit, MPC.		
	- Адаптация к изменяющимся условиям (скольжение, неровные поверхности).		
7	PID-регуляторы в навигации		
	Рассматриваемые вопросы:		
	- Принцип работы PID: пропорциональная, интегральная, дифференциальная составляющие.		
	- Настройка коэффициентов методом Циглера-Никольса.		
	- Anti-windup механизмы для предотвращения перерегулирования.		

No			
п/п	Тематика лекционных занятий / краткое содержание		
8	Модель Predictive Control (MPC)		
	Рассматриваемые вопросы:		
	- Основы МРС: прогнозирование, оптимизация, обратная связь.		
	- Применение для управления дронами и манипуляторами.		
	- Сравнение с классическими методами (PID, LQR).		
9	Визуальная одометрия		
	Рассматриваемые вопросы:		
	- Алгоритмы: ORB-SLAM, VINS-Fusion.		
	- Обработка данных стереокамер и RGB-D сенсоров.		
	- Проблемы при слабой освещенности и динамических объектах.		
10	Обратная кинематика манипуляторов во взаимодействии с подвижными объектами		
	Рассматриваемые вопросы:		
	- Решение обратной задачи для 6-осевых роботов.		
	- Методы оптимизации: псевдообратная матрица Якоби.		
	- Примеры в ROS MoveIt и MATLAB.		
11	Навигация в динамических средах		
	Рассматриваемые вопросы:		
	- Алгоритмы избегания препятствий: D* Lite, RRT*.		
	- Учет движения людей и других роботов.		
	- Интеграция с системами безопасности (экстренная остановка).		
12	Системы управления дронами		
	Рассматриваемые вопросы:		
	- Архитектура РХ4 и ArduPilot.		
	- Планирование маршрутов в 3D-пространстве.		
	- Режимы полета: автономный, полуавтономный, ручной.		
13	ИИ в навигации		
	Рассматриваемые вопросы:		
	- Deep Reinforcement Learning для планирования пути.		
	- Нейросетевые модели для прогнозирования препятствий.		
4.4	- Кейсы: обучение робота в симуляторе и перенос на реальное железо.		
14	Картографирование в 3D		
	Рассматриваемые вопросы:		
	- Использование лидаров Velodyne и RGB-D камер (Intel RealSense).		
	- Алгоритмы обработки точечных облаков (РСL).		
1.5	- Применение в строительстве и инспекции объектов.		
15	Безопасность навигационных систем		
	Рассматриваемые вопросы:		
	- Резервирование сенсоров и алгоритмов.		
	- Обработка сбоев: переход на резервные системы.		
16	- Стандарты ISO 13849 для промышленных роботов.		
10	Промышленное применение навигации		
	Рассматриваемые вопросы: А mazon Polotics: навигания в погистинеских неитрах		
	- Amazon Robotics: навигация в логистических центрах Boston Dynamics: перемещение в сложных ландшафтах.		
	- Возгоп Бупаппез. перемещение в сложных ландшафтах Автономные погрузчики: Toyota, KION Group.		
17	Будущее навигации		
1/	Рассматриваемые вопросы:		
	- Нейроморфные вычисления для ускорения алгоритмов.		
	- неироморфные вычисления для ускорения алгоритмов Квантовые сенсоры: повышение точности измерений.		
	- Этические аспекты автономных систем: ответственность за решения.		
<u> </u>			

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание		
1	Анализ систем навигации роботов		
	В результате выполнения лабораторной работы студенты изучат классификацию систем навигации (абсолютная, относительная, локальная) и проанализируют их применение в кейсах AGV, дронов и подводных роботов.		
2	Калибровка и тестирование сенсоров		
	В результате выполнения лабораторной работы студенты освоят методы калибровки лидара и камеры, а также изучат синхронизацию данных с IMU и GPS в симуляторе Gazebo.		
3	Реализация SLAM-алгоритма		
	В результате выполнения лабораторной работы студенты изучат настройку алгоритма gmapping в		
	ROS для построения карты помещения на основе данных лидара.		
4	Фильтрация данных с использованием фильтра Калмана		
	В результате выполнения лабораторной работы студенты освоят реализацию расширенного фильтра Калмана (ЕКF) для локализации мобильного робота в MATLAB.		
5	Управление дифференциальным приводом		
	В результате выполнения лабораторной работы студенты изучат алгоритм Pure Pursuit и применят его для программирования движения робота по заданной траектории.		
6	Решение обратной кинематики для манипулятора		
	В результате выполнения лабораторной работы студенты освоят настройку ROS MoveIt для		
	позиционирования схвата 6-осевого робота в заданной точке.		
7	Настройка PID-регулятора для стабилизации угла		
	В результате выполнения лабораторной работы студенты изучат принципы работы PID-регулятора		
	и применят их для балансировки перевернутого маятника.		
8	Применение МРС для управления дроном		
	В результате выполнения лабораторной работы студенты освоят настройку Model Predictive Control		
	(MPC) для стабилизации высоты квадрокоптера в MATLAB.		

Практические занятия

	1		
№ п/п	Тематика практических занятий/краткое содержание		
1	Визуальная одометрия на основе ORB-SLAM		
	В результате выполнения практического задания студенты изучат обработку данных стереокамеры		
	в ROS и построение траектории движения робота.		
2	Алгоритм избегания препятствий RRT		
	В результате выполнения практического задания студенты освоят интеграцию алгоритма RRT* в		
	ROS Navigation Stack для мобильного робота в динамической среде.		
3	Настройка автономного полета дрона в РХ4		
	В результате выполнения практического задания студенты изучат программирование маршругов		
	для дрона в симуляторе Gazebo и анализ телеметрии.		
4	Обучение RL-агента для навигации		
	В результате выполнения практического задания студенты освоят тренировку нейросети для		
	движения робота к цели без столкновений в симуляторе.		
5	Создание 3D-карты с помощью лидара		
	В результате выполнения практического задания студенты изучат обработку данных лидара		
	Velodyne в PCL и визуализацию 3D-карты.		

No॒	Тематика практических занятий/краткое содержание		
п/п	тематика практических запитии краткое содержание		
6	Анализ отказоустойчивости навигационной системы		
	В результате выполнения практического задания студенты проанализируют переход на резервные		
	системы при сбое GPS и оценят время реакции.		
7	Разбор кейса: логистические роботы Amazon		
	В результате выполнения практического задания студенты изучат архитектуру навигации роботов		
	Amazon Robotics и выявят ключевые технологические решения.		
8	Проектирование системы навигации для Industry 5.0		
	В результате выполнения практического задания студенты разработают концепт автономного		
	робота с использованием нейроморфных вычислений и оценят его перспективы.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы
2	Подготовка к практическим занятиям
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No	Библиографическое описание	Место доступа
Π/Π	Виолнографическое описание	тиссто доступа
1	Вычислительная геометрия. Алгоритмы и приложения / д. Б. Марк, Ч. Отфрид, в. К. Марк, О. Марк ; перевод с английского А. А. Слинкин. — 3-е изд. — Москва : ДМК Пресс, 2017. — 438 с. — ISBN 978-5-97060-406-9.	URL: https://e.lanbook.com/book/105833 (дата обращения: 06.05.2025). — Текст: электронный.
2	Стейпл, Д. Устройство и программирование автономных роботов. Проекты на Python и Raspberry Pi / Д. Стейпл; научный редактор В. С. Яценк; перевод с английского Е. В. Шевчук. — Москва: ДМК Пресс, 2022. — 520 с. — ISBN 978-5-97060-989-7.	URL: https://e.lanbook.com/book/314879 (дата обращения: 06.05.2025). — Текст: электронный.
3	Попов, Г. В. Микромеханические инерциальные датчики: учебное пособие / Г. В. Попов. — Москва: МГТУ им. Баумана, 2015. — 269 с. — ISBN 978-5-7038-4336-9.	URL: https://e.lanbook.com/book/103444 (дата обращения: 06.05.2025). — Текст: электронный.
4	Шапиро, Л. Компьютерное зрение : учебное пособие / Л. Шапиро, Д. Стокман ; перевод с английского А. А. Богуславского под редакцией С. М. Соколова. — 5-е изд. (эл.). — Москва :	URL: https://e.lanbook.com/book/417998 (дата обращения: 06.05.2025). — Текст: электронный.

Лаборатория знаний, 2024. — 763 с. — ISBN 978-	
5-93208-725-1.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Образовательная платформа «Юрайт» (https://urait.ru/);

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант»;

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер);

Операционная система Microsoft Windows;

Операционная система Linux Ubuntu;

Microsoft Office;

Компас 3D;

CopelliaSim;

VS Code;

Arduino IDE.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Зачет в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

менеджер А.А. Кочурков

заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортно-

технологические средства» П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС П.А. Григорьев

Председатель учебно-методической

комиссии С.В. Володин