МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖЛЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.02 Наземные транспортно-технологические комплексы

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Надежность систем пассажирского подвижного состава

Направление подготовки: 23.04.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Пассажирский комплекс железнодорожного

транспорта

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 8890

Подписал: заведующий кафедрой Вакуленко Сергей Петрович

Дата: 05.10.2023

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Надежность систем пассажирского подвижного состава» — является изучение основ теории надёжности, необходимых для качественного проектирования, изготовления, ремонта, эффективной эксплуатации рельсового нетягового подвижного состава.

Основной целью изучения учебной дисциплины «Надежность систем пассажирского подвижного состава» является формирование компетенций в области теории надёжности, необходимых при эксплуатации, техническом обслуживании, проектировании, производстве, испытаниях, модернизации вагонов, а также при разработке средств и путей повышения эксплуатационных и ремонтных характеристик (экономичности, надёжности, долговечности, безопасности, качества ремонта) для следующих видов деятельности:

производственно-технологического;

организационно-управленческого;

проектного;

научно-исследовательского.

Дисциплина предназначена для получения знаний, умений и навыков для решении следующих профессиональных задач (в соответствии с видами деятельности):

производственно-технологического:

- использования типовых методов расчёта надёжности элементов вагонов и их систем, анализа брака и выпуска некачественной продукции; разработки методов расчёта надёжности, технического контроля и испытания продукции, оценки качества продукции;

организационно-управленческого:

- оценки производственных и непроизводственных затрат или ресурсов на обеспечение качества технического обслуживания, текущего отцепочного ремонта и плановых видов ремонта подвижного состава, менеджмента качества, оценки производственного потенциала предприятия на основе теории надёжности, вероятностного анализа отказов, прогнозированите отказов, оценка показателей безопасности на основе эксплуатационной информации;

проектного:

- разработки технических требований, технических заданий и технических условий на проекты технологических машин, рельсового нетягового подвижного состава, его узлов или систем, технологических

процессов по показателям надёжности, организации и обработки результатов испытаний на надёжность с использованием средств автоматизации и информационных технологий;

научно-исследовательского:

- научных исследований в области эксплуатации и производства вагонов, интерпретации вероятностного моделирования отказов И эксплуатации на основе теории надёжности cформулировкой аргументированных умозаключений и выводов; поиска и проверки новых технических решений по совершенствованию подвижного состава и системы поддержания надёжности эксплуатации (системы технического обслуживания И ремонта); разработки планов, программ И методик проведения исследований надёжности, анализ их результатов.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен применять инструментарий формализации научнотехнических задач, использовать прикладное программное обеспечение для моделирования и проектирования систем и процессов;
- **ПК-5** Способен использовать методы стратегического планирования для повышения эффективности работы пассажирского комплекса.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

методы оценки показателей безопасности вагонов, как технической системы;

нормативные документы, регламентирующие применение теории надёжности в технике;

нормативные документы, по безопасности движения, управлению рисками, системы КАСАНТ;

правила и способы сбора первичной статистической информации при эксплуатации подвижного состава, способы организации испытаний на надёжность и особенности их планирования;

особенности планов испытаний на надёжность и их обозначения; правила проведения испытаний на надёжность;

знать способы получения первичной информации о надёжности вагонов; особенности применения теории вероятностей в инженерных расчётах;

особенности детерминированных и вероятностных моделей; типовую задачу надёжности;

основные теоремы, положения теории вероятностей, используемые в теории надёжности;

понятийный аппарат теории надёжности, классификацию отказов, единичные свойства надёжности, понимать сущность показателей надёжности;

математический аппарат, применяемый для моделирования надёжности; методы оценки надёжности вагона, как технической системы;

показатели качества, определяемые на основе статистической информации об отказах и понимать проблемы при их определении;

методы формирования расчётной схемы системы;

классификацию систем;

метод структурных схем для оценки надёжности системы;

метод перебора состояний систем;

логические методы, метод путей и сечений, разложения по базовому элементу;

метод дерева событий и дерева отказов;

Владеть:

навыком оценки остаточного ресурса деталей и конструкции;

навыком оценки предельных размеров износов и трещин;

нываком оперделять опасные перечень опасных октазв;

навыком получения вероятностных моделей опасных отказов;

навыком оценки рисков опасных отказов;

навыком оценки показателей безопасности вагона;

навыком применения метода упарвления рисками;

навыком оценки функционирования активных и пассивных систем безопасности;

навыком опредления требований к надёжности и безопасности вагонов и систем.

оценкой согласованности моделей надёжности и эмпирических законов распределений;

навыками оценивать мероприятия, необходимые для повышения ремонтопригодности вагонов;

навыками обосновывать математические модели надёжности деталей и узлов вагонов и систем;

навыками работы с вероятностными моделями;

навыками сбора первичной статистической информации и оценки

показателей надёжности.

Уметь:

определить показатели безопасности конструкции с использованием вероятного подхода на примере вагона;

разработать в соответствии с нормативными документами ОАО «РЖД» модель эксплуатациивагона и его систем;

использовать существующие методы сбора первичной статистической информации об отказах;

получить первичную информацию для оценки показателей надёжности;

знать и понимать порядок обработки первичной статистической информации об отказах вагонов и систем;

использовать вероятностный подход при описании событий (отказов);

использовать вероятностные модели, законы распределения случайных величин;

применить на практике методы получения законов распределения случайных величин и их числовых характеристик;

применять методику проверки однородности выборки и приведения её к однородной;

определять надёжность систем с приводимой структурной схемой;

переходить от древовидной структуры события к двухполюсному представлению;

анализировать надёжность системы;

обоснованием математических моделей надёжности деталей и узлов вагонов;

переходить от древовидной структуры события к двухполюсному представлению;

анализировать надёжность системы;

обоснованием математических моделей надёжности деталей и узлов подвижного состава;

оценивать единичные и комплексные показатели надёжности;

прогнозировать показатели надёжности вагонов;

определять точечные оценки параметров моделей надёжности неремонтируемых изделий;

определять интервальные оценки параметров вероятностных моделей отказов;

применять критерии согласия;

3. Объем дисциплины (модуля).

3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
		№2	
Контактная работа при проведении учебных занятий (всего):	20	20	
В том числе:			
Занятия лекционного типа	6	6	
Занятия семинарского типа	14	14	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 88 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание	
Π/Π		
1	Введение	
	Рассматриваемые вопросы:	
	- цели и задачи дисциплины;	

№ π/π	Тематика лекционных занятий / краткое содержание
	- рекомендуемая литература;
	- порядок проведения текущей и промежуточной аттестации;
	- рекомендации по освоению дисциплины;
	- план самостоятельной работы студента.
2	Место теории надёжности среди других дисциплин и её особенности
2	Рассматриваемые вопросы:
	- классическая проблемная технико-экономическая задача надёжности;
	- детерминированные, вероятностные и стахостически неопределимые модели;
	- вопросы надёжности при решении практических задач;
	- история становления и развития;
	- объекты исследований в области надёжности;
	- современные направления исследований надёжности.
3	Классификация понятий теории надёжности
	Рассматриваемые вопросы:
	- классификация понятий теории надёжности;
	- регламентирующие документы и стандарты в области надёжности;
	- объекты надёжности;
	- состояния объектов и схема переходов состояний;
	- стадии жизненного цикла конструкций;
	- проблемы и задачи теории надёжности на эта проектирования, изготовления и испытаний опытной
	партии, производства, использования по назначению, технического обслуживания и ремонта;
	- классификация отказов;
	- предпосылки отказов (проектно-конструкторские, производственно-технологические,
	эксплуатационные);
	- признаки классификации и виды отказов;
	- понятие надёжности;
	- определение термина "надёжность" по ГОСТ;
	- влияние факторов эксплуатации, качества проектирования на надёжность;
	- пример ошибок при проектировании (избыточные связи в механике);
	- уточнённое определение "надёжности";
	- понятия эксплуатация, выходной параметр, грубые ошибки проектирования и изготовления;
	- классификация показателей надёжности;
	- безотказность, показатели безотказности, количественные характеристики безотказности;
	- долговечность, показатели долговечности, количественные характеристики долговечности;
	- ремонтопригодность, показатели ремонтопригодности, количественные характеристики
	ремонтопригодности;
	- сохраняемость, показатели сохраняемости, количественные характеристики сохраняемости;
	- понятие "комплексные показатели надёжности";
	- коэффициент готовности и его стационарное выражение;
	- коэффициент оперативной готовности;
	- коэффициент сохранения эффективности;
	- понятие безопасности;
	- связь рисков и вероятностей;
	- показатели функциональной безопасности;
	- показатели функциональной оезопасности, - классификация нарушений безопасности на железнодорожном транспорте;
	- понятие опасный отказ, описание опасных отказов;
A	- показатели безопасности объектов, количественные характеристикии безопасности.
4	Вероятностные модели надёжности
	Рассматриваемые вопросы:
	- классификация изделий (простейшая);
	- ремонтируемые, неремонтируемые, восстанавливаемые, невосстанавливаемые изделия;

No	T		
Π/Π	Тематика лекционных занятий / краткое содержание		
	- групповые и индивидуальные показатели надёжности;		
	- равномерное распределение. Область применения. Вид модели, параметр модели. Особенности модели;		
	- экспоненциальное (показательное) распределение. Область применения. Вид модели, параметр		
	модели. Особенности модели;		
	- нормальное распределение. Область применения. Вид модели, параметры модели. Особенности		
	модели. Нормализованное нормальное распределение. Пример обоснования модели отказа		
	подшипников;		
	- логарифмически-нормальное распределение. Область применения. Вид модели, параметры модели.		
	Особенности модели;		
	- закон распределения Рэлея. Область применения. Вид модели, параметр модели. Особенности		
	модели;		
	- закон распределения Вейбула-Гнеденко. Область применения. Вид модели, параметры модели.		
	Особенности модели. Пример обоснования модели отказа пятника вагона;		
	- вероятностные модели ремонтируемых изделий. Классификация ремонтируемых элементов вагона; - обобщённая модель эксплуатации. Описание, особенности;		
	- обобщенная модель эксплуатации. Описание, особенности, - упрощённая модель эксплуатации. Допущения. Определение исла отказов за время t. Аункция		
	распределения для описания отказов ремонтируемых изделий. Функция распределения двух		
	случайных аргументов. Интенсивность отказов, параметр потока отказов;		
	- модель эксплуатации деталей типа 2.1.1. Стационарное выражение коэффициента готовности;		
	- реальна модель эксплуатации. Особенности. Коэффициент готовности. Влияние наработки со		
	скрытым отказом на безопасность движения. Пример.		
5	Источники первичной информации о надёжности вагонов		
	Рассматриваеые вопросы:		
	- схемы протоклирования, сбора и накопления информации о техническом состоянии вагонов на		
	железнодорожном транспорте;		
	- информационная система ЖТСВ, вагонные учётные формы, классификаторы информационных		
	систем вагонного комплекса;		
	- группы надёжности;		
	- стендовые и ускоренные испытания, форсированные испытания;		
	- математическое моделирование;		
	- испытания на надёжность; - анализ схем. Эталонная схема сбора первичной информации.		
6	Статистическое толкование показателей надёжности		
U			
	Рассматриваемые вопросы: - испытания на надёжность. Виды испытаний. Программа испытаний;		
	- планы испытаний на надёжность;		
	- определение количества деталй в эксперименте;		
	- классификация выборок;		
	- источники первичной информации;		
	- этапы обработки выборки. Предварительная обработка выборок. Проверка однородности выборки;		
	- математическая обработка результатов эксперимента;		
	- метод максимального правдоподобия. Точечные оценки парметров законов распределения;		
	- интервальные оценки параметров законов распределений. Пример получения доверительных		
	интервалов требуемой точности;		
	- проверка качества точечных оценок. Критерий Колмогорова. Критерий "хи"-квадрат;		
	- эмпирические фукнции распределения. Единичная функция Хевисайда. Метод Фисшбейна. Метод		
	Джонсона; - контрольные испытания на надёжность. Правила проведения;		
	- контрольные испытания на надежность. правила проведения; - метод последовательных испытаний;		
	- метод однократной выборки.		

№	Тематика лекционных занятий / краткое содержание		
Π/Π	YI. — "		
7	Надёжность систем		
	Рассматриваемые вопросы:		
	- понятие системы. Порядок системы;		
	- правила составления расчётной схемы системы;		
	- классификация элементов;		
 классификация связей и классификация систем; технология построения расчётной схемы системы (вагона); 			
- структурные функции систем. Булевы переменные. Типовые последовательная, парали			
структуры. структура с m исправными из n. Последовательно-параллельные структуры. П последовательные структуры;			
	- системы с приводимой и неприводимой структурой;		
	- метод структурных схем. Суть метода. Допущения и ограничения. Типовые структуры;		
	- метод перебора состояний. Технология реализации. Пример применения для структуры с т		
	исправными из 5;		
	- метод логичеких схем. Основные положения алгебры логики;		
	- метод минимальных путей. Технология. Пример мостиковой схемы;		
	- метод минимальных сечений. Технология. Пример мостиковой схемы;		
	- метод разложения по базовому элементу. Технология. Пример;		
	- метод дерева событий (дерева отказов). Правила построения. Условные обозначения и операторы;		
	- соответсвие древовидных и простейших двухполюсных структур;		
	- процедура построения. Пример построения древовидной структуры для электродвигателя;		
	- переход от древовидной структуры с повторяющимися событиями к двухполюсной. Применение		
	метода минимальных сечений. Пример перехода;		
	- использование алгебры логики для древовидной структуры. Структурная схема системы управления		
	автономного рефрижераторного вагона;		
	- графовый метод. Элементы со многими состояниями;		
	- надёжность ремонтируемых систем. Граф переходов состояний. Пример. Матрица переходов состояний;		
	- марковский случайный процесс. Установившиеся режимы для графов связанной структуры.		
	Рекурентная формула Маркова. Марковские случайные процессы;		
	- система уравнений Колмогорова. Пример применения графового метода для системы с двумя		
	переходами (отказ - восстановление) - ремонтируемых систем.		
	6.13. Надёжность систем со многими состояниями. Пример построения модели надёжности		
	электровоздухораспределителя.		
8	Связь показателей надёжности и безопасности.		
	Рассматриваемые вопросы:		
	- понятие безопасности. Проблемы;		
	- действующая классификация случаев нарушения безопасности движения поездов на		
	железнодорожном транспорте;		
	- паратер безопасности вагона (обеспечение безопасной эксплуатации вагонов);		
	- вероятностная модель схода вагона с рельсов. Построение дерева событий. Переход от древовидной		
	к духполюсной структуре. Пример дерева событий относительно столкновения поезда;		
	- концепция глубокоэшелонированной защиты вагона от аварий и крушений;		
	- упрощённая оценка параметра безопасноси вагона;		
	- обобщённая методика оценки параметра безопасности вагона;		
	- оценка оптимальной периодичности контроля технического состояния вагона на ПТО и управление		
	рисками.		
9	Заключение		
	Рассматриваемые вопросы:		
	- обзорная лекция по курсу.		

4.2. Занятия семинарского типа.

Практические занятия

Me	практические запитии	
№ п/п	Тематика практических занятий/краткое содержание	
1	Определение вероятности событий.	
	В результате выполнения практической работы, студент изучает:	
	- основные понятия теории веоятности, используемые в дисциплине;	
	- классифиркация событий, мера случайности событий;	
	- мера зависимости событий;	
	- событие, как подпространство элементарных исходов, вероятность событий;	
	- неограничеснное пространство элементарных исходов;	
	- частота и вероятность события;	
	- теоремы о вероятности суммы и произведения событий.	
2	Оптимизация числа холодильных машин автоматизированного рефрижераторного	
	вагона.	
	В результате выполнения практической работы, студент получает навык по:	
	- применению теорем теории вероятности для оценки вероятности доставки груза;	
	- исследованию зависимости вероятности доставки груза от числа холодильных машин;	
	- обоснованию оптимального числа холодильных машин АРВ;	
	- понятия горячего и холодного резервирования;	
	- обоснованию мероприятий для повышения надёжности доставки груза в АРВ.	
3	Случайные величины и получение законов распределения	
	В результате выполнения практической работы, студент изучает:	
	- понятие случайной величины и величины, используемые для описания надёжности;	
	- дискретные и непрерывные случайные величины;	
	- законы распределения случайных величин, виды представления, свойства;	
4	- ряд распределения, функция распределения, плотность распределения случайных величин.	
4	Получение числовых характеритсик случайных величин.	
	В результате выполнения практической работы, студент изучает:	
	- числовые характеристики случайных величин и их взаимосвязь. Характеристик положения на числовой оси, характеристики расеивания;	
	- мода;	
	- альфа-квантиль случайной величины;	
	- медиана распредления;	
	- матеаическое ожидание;	
	- момент второго порядка;	
	- дисперсия;	
	-средне-квадратическое отклонение.	
5	Примеренеи формулы Байса, формулы полной вероятности и теоремы о повторении	
	опытов для решения проблемных практических задач	
	В результате выполнения практической работы, студент изучает:	
	- формула полной вероятности, пример использования в надёжности;	
	- теорема Байеса, пример использования;	
	- теорема о повторении опытов, пример использования;	
	- биномиальный коэффициент и биномиальное распределение.	
6	Моделирование выборочного контроля технического состояния.	
	В результате выполнения практической работы, студент получает навык по:	
	- исследованию проблемы качества выборочного контроля на основе замечательных теорем теории	
	вероятностей;	
	- решению проблемной задачи по определению среднего числа дефектных деталей принятых	

№		
Π/Π	Тематика практических занятий/краткое содержание	
	контролёром при проведении выборочного контроля;	
	- правила выборочного контроля вагонных деталей (по стандартам).	
7	Моделирование сплошного контроля технического состояния	
	В результате выполнения практической работы, студент получает навык по:	
	- применению теории вероятностей для оценки качества сплашного контроля качества.	
8 Анализ ремонтопригодности вагона применительно к текущему техни		
	содержанию.	
	В результате выполнения практической работы, студент изучает:	
	- требования нормативной документации к колёсным парам вагонов в условиях эксплуатации;	
	- нормативная документация по эксплуатации вагонов;	
	- классификация отказов колёсных пар вагонов;	
	- анализ ремонтопригодности по назначению колёсной пары по остроконечному накату гребня при	
	использовании вагона;	
	- анализ ремонтопригодности при использовании вагона и опредление направлений и мероприятий	
	для её повышения на примере колёсных пар.	
9	Оценка ремонтопригодности вагона применительно к ремонту крупного обдъёма	
	(деповскому и капительному).	
	В результате выполнения практической работы, студент изучает:	
	- требования нормативной документации к колёсным парам вагонов при плановом ремонте;	
	- нормативная документация по ремонту колёсных пар;	
	- анализ ремонтопригодности по назначению колёсной пары по остроконечному накату гребня в	
	условиях планового ремонта;	
	- анализ ремонтопригодности в условиях планового ремонта и опредление направлений и	
	мероприятий для её повышения на примере колёсных пар.	
10	Моделирование работы системы контроля нагрува букс и выбор оптимальной схем	
	В результате выполнения практической работы, студент получает навык по:	
	- применению теории вероятностей при анализе работы бортовых систем безопасности вагонов;	
	- решению проблемной задачи: выбора оптимальной схемы СКНБ;	
	- формированию предложений для повышения безопасности вагонов.	
11	Оценка остаточного ресурса деталей, безотказно проработавших время t.	
	В результате выполнения практической работы, студент получает навык по:	
	- расчётному обоснование долговечности подшипников типовой буксы. Расчётным методам	
	определения показателей надёжности;	
	- остаточный ресурс и связь его с вероятностными моделями надёжности неремонтируемых изделий	
	- оценке остаточного ресурса при законе распределения Вейбула-Гнеденко;	
	- построению плана контролей технического состояния вагона при обеспечении требуемого уровня	
	надёжности в межремонтный период.	
12	Моделирование плана контроля технического состояния деталей при различных	
	моделях отказов.	
	В результате выполнения практической работы, студент получает навык по:	
	- оценке остаточного ресурса при экспоненциальном распеределении;	
	- построению плана контролей технического состояния вагона при обеспечении требуемого уровня	
	надёжности в межремонтный период;	
	- оценке остаточного ресурса при нормальном распеределении;	
	- применению нармализованного нормального распределения при решении практических задач;	
	- построению плана контролей технического состояния вагона при обеспечении требуемого уровня	
	надёжности в межремонтный период.	
13	Применение нормального нормализованного закона распределения.	
	В результате выполнения практической работы, студент получает навык по:	
	- применению нармализованного нормального распределения при решении практических задач;	

$N_{\underline{0}}$	Taylotyvya vaatavyyaavyy aavatyy /maryaa aa yanyaavya		
п/п	Тематика практических занятий/краткое содержание		
	- построению плана контролей технического состояния вагона при обеспечении требуемого уровня надёжности в межремонтный период.		
14	Исследование проблемной задачи. Оптимизация распределения надёжности между элементами вагонных конструкций.		
	В результате выполнения практической работы, студент получает навык по:		
	- применению метода динамического программирования при решении проблемной задачи;		
	- формированию требований к надёжности элементов вагонных конструкций для обеспечения		
	требуемой безотказности вагона.		
15	Генерирование случайных величин, подчиняющихся различным законам		
	распределения.		
	В результате выполнения практической работы, студент изучает: - теоремы для генерации случайных величин, имеющих заданный закон распределения; - генерация случайных величин с заданными параметрами;		
	- исследование влияния объёма выборки на числовые характеристики сгенерированных случайных величи (закон больших чисел).		
16	Анализ требований к надёжности элементов вагонных конструкций, заложенных в		
	нормативно-технической документации.		
	В результате выполнения практической работы, студент получает навык по:		
	- рассматрению государственных стандартов на детали и узлы вагонов в части требований к		
	надёжности;		
	- определению перечня нормируемых показателей надёжности и других требований качества изделий;		
	- опредению порядка контроля заложенных показателй надёжности.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы		
1	Отработка оснонвых положений теории вероятностей по результатам входного		
	контроля знаний.		
2	Подготовка к тестированию. Отработка контрольных вопросов по конспектам лекций		
	и литературе. Консультации в интерактивном режиме. Основные понятия теории		
	надёжности		
3	Изучение области применения законов, используемых в теории надёжности.		
4	Подготовка к тестированию. Отработка контрольных вопросов по конспектам лекций		
	и литературе. Консультации в интерактивном режиме. Отраслевая информационная		
	база об отказах техники. Правила приёмочных и контрольных испытаний.		
5	Подготовка к тестированию. Отработка контрольных вопросов по конспектам лекци		
	и литературе. Испытания на надёжность. Источники получения первичной		
	информации.		
6	Самостоятельное изучение получения точечных оценок параметров для различных		
	законов распределений по результатам эксперимента. Подготовка к тестировангию.		
	Отработка лекционного материала		
7	Отработка лекционного материала. Дерево событий и дерево отказов. Построение		
	дерева событий на примере грузового вагона. Переход от древовидного		
	представления системы к двухполюсному.		

№ п/п	Вид самостоятельной работы
8	Отработка лекционного материала. Изучения технологии работы системы КАСАНТ
	на железнодорожном транспорте.
9	Поиск и анализ статистики по нарушениям безопасности на железнодорожном
	транспорте.
10	Подготовка к промежуточной аттестации.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Теория вероятностей и ее инженерные приложения. Е. С.	ИТБ УЛУПС
	Вентцель, Л.А. Овчаров Учебное пособие М.: Издательский	(Абонемент ЮИ); ИТБ
	центр "Академия" 464 с ISBN: 978-5-7695-1052-8., 2003	УЛУПС (ЧЗ1 ЮИ)
2	Задачи и упражнения по теории вероятностей. Е. С.	ИТБ УЛУПС
	Вентцель Учебное пособие М.: Издательский центр	(Абонемент ЮИ); ИТБ
	"Академия" 448 с ISBN: 978-5-7695-1054-4., 2005	УЛУПС (ЧЗ1 ЮИ)
3	Мультимодальные перевозки и транспортная логистика.	НТБ (фб.)
	К.Н. Войнов Учебное пособие М.: Транспорт 272 с., 2007	
4	Внешнеторговые операции морского транспорта и	НТБ (фб.)
	мультимодальные перевлзки. Лимонов Э.Л. Учебник М.:	
	Издательство Модуль 592 с ISBN: 978-5-93630-933-5.,	
	2016	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система Научно-технической библиотеки МИИТ (http://library.miit.ru/)

Информационно-справочный портал Проект Российской государственной библиотеки для молодежи (http://www.library.ru/)

Информационный портал нормативных документов ОАО «РЖД» (http://rzd.ru/)

База нормативных документов (ГОСТ) (https://docs.cntd.ru/document/)

Электронно-библиотечная система IPRbooks (http://www.iprbookshop.ru);

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант»;

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/);

Электронно-библиотечная система «Академия» (http://academia-moscow.ru/);

Электронно-библиотечная система «BOOK.ru» (http://www.book.ru/);

Электронно-библиотечная система «ZNANIUM.COM» (http://www.znanium.com/);

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения занятий по дисциплине необходимо наличие ПО Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения учебных занятий необходима аудитория, оснащенная доской, проектором, экраном и ПК.

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, профессор, к.н. кафедры «Управление транспортным бизнесом и интеллектуальные системы»

С.П. Вакуленко

Согласовано:

Заведующий кафедрой УТБиИС С.П. Вакуленко

Председатель учебно-методической

комиссии Н.А. Клычева