МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 13.04.01 Теплоэнергетика и теплотехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Надежность систем теплоснабжения

Направление подготовки: 13.04.01 Теплоэнергетика и теплотехника

Направленность (профиль): Энергосберегающие процессы и технологии

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 377843

Подписал: заведующий кафедрой Дмитренко Артур

Владимирович

Дата: 24.04.2024

1. Общие сведения о дисциплине (модуле).

освоения учебной «Надежность Целью дисциплины систем теплоснабжения» является формирование в процессе подготовки магистров по направлению 13.04.01 «Теплоэнергетика и теплотехника» по программе «Энергосберегающие процессы и технологии» компетенций, позволяющих изучать структуру и принципы построения теплоэнерге-тической системы промышленного предприятия, закономерности И особенности функционирования, составлять и анализировать энергобалансы различного назначения и вида, с целью качественной и количественной оценки состояния энергетического хозяйства и энергоиспользования.

Задачей преподавания дисциплины является

- получение магистрами знаний о принципах построения теплоэнергетиче-ской системы промышленного предприятия, ее особенностях, проблемах и способах их решения; о классификации энергетических балансов, принципах и особенностях их составления.
- умение составлять и анализировать энергобалансы теплотехнологических схем и их элементов.
- приобретение навыков составления и анализа энергобалансов теплотехно-логических схем и их элементов.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-4** Способность разрабатывать и оптимизировать технологические решения при проектировании теплоэнергетических объектов и систем;
- **ПК-6** Способность к осуществлению теоретического обобщения научных данных, результатов экспериментов и наблюдений с оформлением результатов научно-исследовательских работ в соответствии с актуальной нормативной документацией в профессиональной области знаний.;
- **ПК-7** Готовность к разработке элементов планов и методических программ проведения исследований и разработок после анализа научной проблемы по тематике проводимых исследований и разработок в соответствии с актуальной нормативной документацией в профессиональной области знаний.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные требования к обеспечению требуемых характеристик режимов работы теплотехнологического оборудования;
- основные методы, технологии разработки и проектирования теплоэнергетических объектов и систем, критерии оценки их эффективности;
- мероприятия по совершенствованию и оптимизации работы теплоэнергетических объектов и систем.

Уметь:

- проводить оценку надёжности и эффективности работы теплотехнологического оборудования;
- формулировать задания на разработку проектных решений, связанных с модернизацией технологического оборудования, мероприятиями по улучшению эксплуатационных характеристик;
- разрабатывать план мероприятий по повышению работы теплоэнергетических объектов и систем после оценки надёжности системы.

Владеть:

- навыками разработки и оптимизации технологических решений при проектировании теплоэнергетических объектов и систем;
 - навыками определения параметров теплоэнергетической системы;
- навыками расчёта числовых характеристик надёжности для сложных систем.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 132 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Общие вопросы и определения теории надежности.			
	Рассматриваемые вопросы:			
	-нормативные документы, характеризующие понятие надежности.			
	-числовые характеристики надежности			
	-системные показатели надежности			
2	Причины повреждаемости тепловой сети.			
	Рассматриваемые вопросы:			
	Внутренняя и внешняя коррозия тепловой сети.			
	Проблема гидроудара.			
	Тепловое расширение и механические деформации			
3	Категории надежности. Рассматриваемые вопросы: Основные категории надежности и их расчет.			
	Безотказность,			
	долговечность,			
	ремонтопригодность			
сохраняемость трубопроводной системы.				
4	Оценка надежности трубопроводов под давлением.			
	Рассматриваемые вопросы:			
	Рабочее и испытательное давления в тепловой сети.			
	Расчет прочности трубопровода.			
5	Обеспечение заданных параметров теплоснабжения потребителя.			
	Рассматриваемые вопросы:			
	Тепловой расчет трубопроводной системы.			
	Годовой график тепловой нагрузки района.			
	Суточный график системы энергоснабжения			

№ п/п	Тематика лекционных занятий / краткое содержание	
6	Методы повышения надежности системы теплоснабжения.	
	Рассматриваемые вопросы:	
	Метод резервирования системы энергоснабжения	
	защита тепловой сети от внешних воздействий.	
	Сооружение на котельных автономных источников электроэнергии	

4.2. Занятия семинарского типа.

Лабораторные работы

№	Наименование лабораторных работ / краткое содержание	
Π/Π		
1	Расчет числовых характеристик надежности для сложной системы	
	В результате выполнения лабораторной работы студент получает навык проведения расчетов	
	числовых характеристик надежности для теплоэнергетических систем.	
2	Оценка электрической коррозии трубопровода, расположенного вблизи рельсового	
	транспорта	
	В результате выполнения лабораторной работы студент получает навык	
	исследования трубопровода, подвергнувшегося электрической коррозии, навык оценки надежности	
	трубопровода на основании данных, полученных при исследовании.	
3	Расчет ремонтопригодности участка тепловой сети, проложенного в непроходном	
	канале	
	В результате выполнения лабораторной работы студент получает навык	
	Расчета ремонтопригодности участка тепловой сети.	
4	Оценка надежности трубопроводов под давлением. Расчет прочности	
	трубопровода под давлением	
	В результате выполнения лабораторной работы студент получает навык оценки надежности	
	трубопровода, находящегося под давлением, а также расчета его прочности.	
5	Оценка надежности температурного режима тепловой сети и построения годового	
	графика тепловой нагрузки микрорайона	
	В результате выполнения лабораторной работы студент получает навык построения годового	
	графика тепловой нагрузки микрорайона, навык оценки надежности поддержания необходимого	
	температурного режима для обеспечения подачи тепла в соответствии с графиком.	
6	Разработка тепловой схемы источника автономной электрической генерации для	
	отдаленного объекта РЖД	
	В результате выполнения лабораторной работы студент получает навык разработки тепловых схем	
	источников автономной электрической генерации для бесперебойного питания объекта, повышения	
	надежности снабжения объекта электрической энергией.	

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание		
1	Общие вопросы и определения теории надежности.		
	В результате работы на практическом занятии студент получает навыки определения параметров по		
	расчету числовых характеристик надежности для сложной системы		
2	Причины повреждаемости тепловой сети.		
	В результате работы на практическом занятии студент получает навыки определения параметров		
	оценки электрической коррозии трубопровода, расположенного вблизи рельсового транспорта		

№ п/п	Тематика практических занятий/краткое содержание	
3	Категории надежности.	
	В результате работы на практическом занятии студент получает навыки определения параметров	
	при расчете ремонтопригодности участка тепловой сети, проложенного в непроходном канале	
4	Оценка надежности трубопроводов под давлением.	
	В результате работы на практическом занятии студент получает навыки определения параметров	
	при расчете прочности трубопровода под давлением	
5	Обеспечение заданных параметров теплоснабжения потребителя.	
	В результате работы на практическом занятии студент получает навыки определения параметров	
	по оценке надежности температурного режима тепловой сети и построения годового графика	
	тепловой нагрузки микрорайона	
6	Методы повышения надежности системы теплоснабжения.	
	В результате работы на практическом занятии студент получает навыки определения параметров	
	при разработка тепловой схемы источника автономной электрической генерации для отдаленного	
	объекта РЖД	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
	Подготовка к лабораторным занятиям.	
2	Подготовка к практическим занятиям.	
3	Работа с лекционным материалом, литературой.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Энергосбережение в теплоэнергетике и теплотехнологиях / Учебник для вузов. О.Л. Данилов, А.Б. Горяев, И.В. Яковлев и др.; М.: Издательский дом МЭИ, 2021 с. 504. ISBN 978-5-7046-2590-2	https://e.lanbook.com/book/362507 (дата обращения: 03.02.2025). Текст: электронный
2	Бочкарев С. В., Трушников К. П., Лейзгольд К. А. Диагностика и надежность автоматизированных и энергетических систем в примерах и задачах. Издательство: Пермский национальный исследовательский политехнический университет, 2022 с. 274	https://e.lanbook.com/book/328811 (дата обращения: 03.02.2025). Текст: электронный
3	Буйнов Н. Е. Надежность систем теплоснабжения: Учебное пособие . Издательство: Иркутский	https://e.lanbook.com/book/183500 (дата обращения: 14.01.2025). Текст: электронный

	государственный аграрный университет имени	
	А.А. Ежевского, 2021 с. 100	
4	Примин О. Г. Надежность систем водоснабжения	https://e.lanbook.com/book/262274
	и водоотведения: учебно-методическое пособие.	(дата обращения: 14.01.2025).
	Издательство: Московский государственный	Текст: электронный
	строительный университет, 2021 с. 68. ISBN	
	978-5-7264-2953-3	
5	Надежность технических систем: учебно-	https://e.lanbook.com/book/192824
	методическое пособие по выполнению	(дата обращения: 03.02.2025)
	практических и лабораторных работ /Сост. Ю.В.	Текст: электронный
	Иванщиков, В.Н. Гаврилов Издательство:	
	Чувашский государственный аграрный	
	университет, 2021 с. 122	
6	Зубарев Ю. М., Богданов Е. В. Надежность и	https://e.lanbook.com/book/436265
	диагностика технологических систем: Учебник	
	для вузов. Издательство "Лань", 2024. – 156 с.	
	ISBN 978-5-507-49972-4	
7	Чекардовский С.М., Чекардовская И.А., Илюхин	https://book.ru/books/941954
	К.Н., Миронов В.В., Чекардовский М.Н. Методы и	
	способы комплексных исследований и оценки	
	технического состояния оборудования	
	инженерных систем. Издательство: Русайнс, 2021.	
	– 282 c. ISBN 978-5-4365-8471-3	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru);

Единая коллекция цифровых образовательных ресурсов (http://www.window.edu.ru);

Научно-техническая библиотека РУТ (МИИТ) (http://www.library.miit.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программы Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

9. Форма промежуточной аттестации:

Экзамен во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Теплоэнергетика транспорта» Института транспортной техники и систем управления

И.В. Агафонова

Согласовано:

Заведующий кафедрой ТТ

А.В. Дмитренко

Председатель учебно-методической

комиссии С.В. Володин