МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности
23.05.05 Системы обеспечения движения поездов,

23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Надежность электроснабжения

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 05.11.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование у студентов необходимых знаний по обработке статистической информации;
- понимания конкретных путей повышения надёжности устройств электроснабжения

Задачами дисциплины (модуля) являются:

- овладение методологией проведения испытаний на надёжность оборудования системы электроснабжения железных дорог;
- формирование навыков по обработке статистической информации о надёжности устройств системы электроснабжения железных дорог.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-2 - Способен осуществлять организационно-техническое, административно-правовое и финансово-экономическое регулирование процессов передачи электроэнергии потребителям с соблюдением критериев надежности электроснабжения, параметров качества электроэнергии и её эффективного использования и экономного расходования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

основные положения теории

Уметь:

рассчитывать показатели надёжности нового оборудования, показатели надёжности сложных технических объектов.

Владеть:

элементами экономического анализа при сравнении вариантов технических решений по надёжности.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Turkunggung	Количество часов	
Тип учебных занятий		Семестр №6
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
п/п	темитики лекционных запятии / криткое содержиние		
1	Понятие о надёжности. Термины теории надёжности.		
	Рассматриваемые вопросы:		
	- понятие о вероятности, законы теории вероятностей;		
	- случайные события и случайные величины, их характеристики;		
	- классификация отказов применительно к основному оборудованию системы электроснабжения.		
2	Показатели надёжности невосстанавливаемых объектов.		
	Рассматриваемые вопросы:		
	- вероятности отказа и безотказной работы невосстанавливаемых объектов, их час-тота и		
	интенсивность отказов;		
	- средняя наработка до отказа;		
	- планы испытаний техники на надежность.		

No॒	T			
Π/Π	Тематика лекционных занятий / краткое содержание			
3	Законы распределения наработки до отказа невосстанавливаемых объектов.			
	Рассматриваемые вопросы:			
	- законы распределения случайных величин;			
	- особенности распределения Вейбулла;			
	- влияние на вид зависимостей ВБР и интенсивности отказов параметров распределения Вейбулла,			
	их выбор для заданной статистики;			
	- суперпозиция распределений;			
	- критерии согласия;			
	- критерий согласия Колмогорова;			
	- критерий согласия Пирсона.			
4	Расчет показателей сложных объектов			
	Рассматриваемые вопросы:			
	- структурно-логические схемы надежности;			
	- виды резервирования;			
	- примеры соединений элементов в объекте по надёжности применительно к оборудованию тяговых			
	подстанций и контактной сети;			
	- расчет показателей надёжности сложных объектов;			
	- средняя наработка до отказа резервированного блока.			
5	Показатели надёжности восстанавливаемых объектов			
	Рассматриваемые вопросы:			
	- понятие о потоках отказов;			
	- общие сведения о восстанавливаемых объектах;			
	- вероятности восстановления и невосстановления;			
	- частота и интенсивность восстановления;			
	- среднее время восстановления и средняя наработка на отказ;			
	- функции и коэффициенты готовности и простоя.			
6	Определение вероятности заданного числа отказов.			
	Рассматриваемые вопросы:			
	- ведущая функция и параметр потока отказов;			
	- свойства простейших потоков отказов;			
	- закон Пуассона.			
7	Повышение надёжности устройств электроснабжения			
	Рассматриваемые вопросы:			
	- мроблемы технического обслуживания устройств электроснабжения;			
	- контактная сеть – устройство, не имеющее резерва;			
	- конструктивно-производственные и эксплуатационные факторы, определяющие надёжность			
	устройств электроснабжения железных дорог;			
	- объективные и субъективные эксплуатационные факторы.			

4.2. Занятия семинарского типа.

Практические занятия

	1	
№ п/п	Тематика практических занятий/краткое содержание	
1	Понятие о вероятности, законы теории вероятностей. Случайные события и	
	случайных величины, их характеристики. Решение задач 1 – 4.	
	В результате занятия студент получает понятие:	
	- о вероятности;	
	- о случайных событиях;	

No	T		
Π/Π	Тематика практических занятий/краткое содержание		
	- о случайных величинах.		
	В процессе решения задач получает знания законов теории вероятностей.		
2	Показатели надёжности невосстанавливаемых объектов.		
	В результате практического занятия студент получает понятие:		
	- о вероятности безотказной работы;		
	- частоты и интенсивности отказов.		
	Приобретает навык расчётов надёжности объектов.		
3	Законы распределения случайных величин. Решение задач 9 – 10		
	В результате работы на практическом занятии, студент получает навык выбора закона		
	распределения для данной статистики, особенности закона распределения Вейбулла.		
4	Критерии согласия. Решение задач 11 – 16		
	В результате работы на практическом занятии студент получает навык проверки		
	правильности выбора закона распределения с помощью критериев согласия Колмо-горова и х2		
	Пирсона.		
5	Расчет показателей сложных объектов.		
	В результате занятия студент получает понятие:		
	- о схемах надежности;		
	- о видах резервирования.		
	Получает практические навыки расчёта показателей надёжности сложных объектов.		
6	Показатели надежности восстанавливаемых объектов. Решение задач 17 – 23.		
	В результате занятия студент получает понятие:		
	- о потоках отказов оборудования системы электроснабжения;		
	- о сезонной нестационарности этих потоков и её причинах;		
	- о коэффициентах готовности и простоя.		
7	Определение вероятности заданного числа отказов. Решение задач 24 – 30.		
	В результате работы на практическом занятии студент получает понятие о пара-метре потока		
	отказов и законе Пуассона; получает навык расчёта возможного числа отказов на планируемый		
	период.		
8	Повышение надёжности устройств электроснабжения.		
	В результате занятия студент получает понятие:		
	- о проблемах технического обслуживания устройств электроснабжения;		
	- о конструктивно-производственных и эксплуатационных факторах, определяющих надёжность		
	устройств электроснабже-ния железных дорог.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	подготовка к практическим занятиям
2	работа с лекционным материалом и литературой
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Примерный перечень тем (вариантов) курсовых проектов представлен в Приложении 1 к рабочей прорамме.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Сапожников, В. В. Основы теории надежности и технической диагностики : учебник / В. В. Сапожников, В. В. Сапожников, Д. В. Ефанов. — Санкт-Петербург : Лань, 2022. — 588 с. — ISBN 978-5-8114-3453-4.	https://e.lanbook.com/book/206324 (дата обращения: 14.02.2024).
2	Малафеев, С. И. Надежность электроснабжения: учебное пособие для вузов / С. И. Малафеев. — 3-е изд., стер. — Санкт-Петербург: Лань, 2022. — 368 с. — ISBN 978-5-8114-9036-3.	https://e.lanbook.com/book/183737 (дата обращения: 14.02.2024).
3	Юсупов, Р. Р. Основы теории надежности: конспект лекций для вузов: учебное пособие / Р. Р. Юсупов. — Самара: СамГУПС, 2022. — 119 с.	https://e.lanbook.com/book/292475 (дата обращения: 31.01.2024).
4	Загорский, В. А. Основы теории надежности систем электроснабжения желзнодорожного трнаспорта: учебное пособие / В. А. Загорский. — Самара: СамГУПС, 2012. — 80 с.	https://e.lanbook.com/book/130363 (дата обращения: 31.01.2024).
5	Меликов, А. В. Теория надежности элементов электротехнических комплексов и систем электроснабжения: учебное пособие / А. В. Меликов. — Волгоград: Волгоградский ГАУ, 2019. — 96 с. — ISBN 978-5-4479-0193-6.	https://e.lanbook.com/book/139223 (дата обращения: 14.02.2024).

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)

Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru) Российская Государственная Библиотека http://www.rsl.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Маркерная доска или проектор

9. Форма промежуточной аттестации:

Курсовая работа в 6 семестре.

Экзамен в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры

«Электроэнергетика транспорта» А.Е. Голицына

Согласовано:

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин