МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Начертательная геометрия и компьютерная графика

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Инжиниринг подвижного состава

высокоскоростных железнодорожных

магистралей

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3409

Подписал: заведующий кафедрой Карпычев Владимир

Александрович

Дата: 09.09.2024

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины (модуля) «Начертательная геометрия и компьютерная графика» является:

- выработка знаний, умений и навыков, необходимых студентам для выполнения и чтения чертежей, выполнение эскизов деталей;
 - составление конструкторской и технической документации.

Задачи изучения дисциплины:

- формирование общей геометрической и графической подготовки студента;
- геометрическая, графическая и компьютерная подготовка, формирующая способность студента правильно воспринимать, переосмысливать и воспроизводить графическую информацию;
- формирование способности студента разрабатывать и вести конструкторскую документацию в соответствии с требованиями Единой системы конструкторской документации (ЕСКД), используя средства машинной графики и современных компьютерных технологий;
- обеспечение студента минимумом фундаментальных инженерногеометрических знаний, на базе которых будущий специалист сможет успешно изучать конструкторско-технологические дисциплины, а также овладевать новыми знаниями в области компьютерной графики и геометрического моделирования.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-4 - Способен выполнять проектирование и расчет транспортных объектов в соответствии с требованиями нормативных документов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- способностью приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии;
- виды и назначение проектно-конструкторской и технологической документации на изделия машиностроения;
 - способы построения и преобразования ортогональных чертежей;

- основные виды геометрических фигур, с помощью которых формируются техни-ческие изделия;
- теоретические основы построения ортогональных и аксонометрических чертежей геометрических фигур.

Уметь:

- строить эскизы и чертежи изделий машиностроения;
- создавать объёмные модели изделий машиностроения и строить их чертежи на основе этих моделей;
- по ортогональным чертежам строить наглядные изображения геометрических фигур и технических изделий;
- строить развёртки поверхностей геомет-рических фигур и технических изделий;
 - строить изображения геометрических объектов по заданным условиям;
- записывать алгоритм решения поставленных задач на языке символов и словесно объяснить ход решения.

Владеть:

- средствами 2D и 3D графики;
- компьютерными технологиями построения и ведения технической документации;
- одной или несколькими CAD системами для автоматизированного построения и ведения технической документации на различные изделия;
 - чертежом, как средством выражения технической мысли;
- основами создания графических конструкторских документов в соответствии с требованиями ЕСКД.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
	Всего	Семестр	
	DCCIO	№ 1	№2
Контактная работа при проведении учебных занятий (всего):	62	32	30

В том числе:			
Занятия лекционного типа	16	16	0
Занятия семинарского типа	46	16	30

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 118 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	T	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Точка, прямая, плоскость.	
	Рассматриваемые вопросы:	
	- предмет инженерной графики;	
	- ортогональные проекции и их свойства;	
	- эпюр точки и ее координаты.	
2	Длина отрезка прямой и углов наклона его к плоскостям проекций.	
	Рассматриваемые вопросы:	
	- прямые частного положения;	
	- взаимное расположение двух прямых;	
	- проецирование прямого угла.	
3	Способы задания плоскости.	
	Рассматриваемые вопросы:	
	- эпюр плоскости частного и общего положения;	
	- главные линии плоскости;	
	- точка и прямая, лежащие в плоскости.	
4	Взаимное расположение двух плоскостей.	
	Рассматриваемые вопросы:	
	- взаимное расположение прямой и плоскости.	
	- прямая, перпендикулярная к плоскости.	
5	Способ замены плоскостей проекций.	
	Рассматриваемые вопросы:	
	- суть способа;	

№ п/п	Тематика лекционных занятий / краткое содержание
	- четыре основные задачи, решаемые способом преобразования чертежа.
6	Многогранники.
	Рассматриваемые вопросы:
	- проекции многогранников;
	- сечение многогранника проецирующей плоскостью;
	- позиционные задачи на поверхности многогранников.
7	Кривые поверхности.
	Рассматриваемые вопросы:
	-поверхности, основные понятия поверхности: каркас, определитель, очертание;
	- поверхности вращения второго порядка и их свойства;
	-каркасный способ решения позиционных задач на поверхности.
8	Взаимное пересечение 2-х поверхностей.
	Рассматриваемые вопросы:
	- способ плоскостей уровня;
	- способ концентрических сфер.
9	Обзорная лекция по курсу начертательной геометрии.
	Рассматриваемые вопросы:
	- разбор решения метрических, позиционных и конструктивных задач с использованием каркасного
	метода.

4.2. Занятия семинарского типа.

Практические занятия

No		
п/п	Тематика практических занятий/краткое содержание	
1	Ортогональное проецирование точки.	
	В результате выполнения практического задания были рассмотрены эпюр точки в системе двух и трех плоскостей проекций, а также координаты точки.	
2	Плоскость: способы задания, эпюр плоскости частного и общего положения.	
	В результате выполнения практического задания были рассмотрены главные линии плоскости, а также взаимная принадлежность точки, прямой и плоскости.	
3	Взаимное расположение прямой и плоскости(их параллельность, пересечение,	
	перпендикулярность)	
	В результате выполнения практического задания было рассмотрено взаимное расположение двух	
	плоскостей.	
4	Способ замены плоскостей проекций.	
	В результате выполнения практического задания были рассмотрены решения четырёх основных задач	
	способом замены плоскостей проекций.	
5	Способы образования поверхностей, их задание и изображение на эпюрах	
	В результате выполнения практического задания были рассмотрены поверхности вращения и их	
	основные свойства, а также каркасный метод решения позиционных задач на поверхности.	
6	Взаимное пересечение поверхностей	
	В результате выполнения практического задания был рассмотрен способ плоскостей уровня, а так же	
	способ концентрических сфер.	
7	Общее знакомство с интерфейсом системы Компас-График.	
	В результате выполнения практического задания были рассмотрены нструментальные панели и	
	команды системы Компас.	

No	Тематика практических занятий/краткое содержание		
п/п			
8	Работа с командами компактной панели.		
	В результате выполнения практического задания было рассмотрено построение трех видов гранного тела с вырезом.		
9	Выделение и удаление объектов на чертеже.		
	В результате выполнения практического задания были рассмотрены элементы редактирования. А так же построение трех видов, горизонтального и профильного разрезов тела вращения, имеющего сквозное отверстие.		
10	Построение трех видов детали с необходимыми разрезами.		
	В результате выполнения практического задания был рассмотрен ортогональный чертеж задачи 3, выполняемый в системе Компас.		
11	Использование конструкторской библиотеки Компас.		
	В результате выполнения практического задания были рассмотрены график, а так же построение аксонометрии детали.		
12	Изображение резьбового соединения.		
	В результате выполнения практического задания были рассмотрены соединение болтом и соединение винтом.		
13	Обмер детали.		
	В результате выполнения практического задания было рассмотрено выполнение рабочего чертежа детали по его эскизу в системе Компас (РГР2, часть 3).		
14	Работа с чертежом.		
	В результате выполнения практического задания были рассмотрены простановка размерных линий и условных знаков, обмер детали, выполнение рабочего чертежа детали по его эскизу в системе Компас, а также выполнение эскизов и рабочих чертежей деталей.		

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вид самостоятельной работы
п/п	Вид самостоительной рассты
1	Подготовка к практическим занятиям.
2	Изучение дополнительной литературы.
3	Изучение лекционного материала.
4	Выполнение расчетно-графической работы.
5	Подготовка к контрольной работе.
6	Подготовка к промежуточной аттестации.
7	Подготовка к текущему контролю.
8	Выполнение расчетно-графической работы.
9	Подготовка к контрольной работе.
10	Подготовка к промежуточной аттестации.
11	Подготовка к текущему контролю.

4.4. Примерный перечень тем видов работ

1. Примерный перечень тем контрольных работ

- 1. Примерный перечень тем контрольных работ
- пересечение поверхностей;
- пересечение фигур;
- эскиз детали;
- эскиз устройства.
- 2. Примерный перечень тем расчетно-графических работ
- 2. Примерный перечень тем расчетно-графических работ

Наименование изделия

Варианты курсовой работы определяются названием изделия (сборочной единицы), например:

- «Насос электрический диафрагменный»;
- чертёж сборочный «Электромагнит»;
- чертёж сборочный «Синхрогенератор»;
- чертёж сборочный «Механизм конечного выключателя»;
- чертёж сборочный «Предохранитель»;
- чертёж сборочный «Кнопка кратковременной подачи электрических сигналов»;
 - чертёж сборочный «Колодка для испытания транзистора»;
 - чертёж сборочный «Гнездо контактное»;
 - чертёж сборочный «Тормоз электромагнитный»;
 - чертёж сборочный «Включатель»;
 - чертёж сборочный «Разъём высокочастотный»;
 - чертёж сборочный «Катушка индуктивности»;
 - чертёж сборочный «Контакт»;
 - чертёж сборочный «Переходник»;
 - чертёж сборочный «Реостат»;
 - чертёж сборочный «Держатель предохранителя»
 - чертёж сборочный «Патрон»;
 - чертёж сборочный «Розетка высокочастотного разъёма»;
 - чертёж сборочный «Фонарь»;

- чертёж сборочный «Колодка контактная»;
- чертёж сборочный «Поглотитель».

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Начертательная геометрия Н.Н. Крылов, Г.С. Иконникова, В.Л. Николаев, В.Е. Васильев Однотомное издание Высш. шк., 224 с., 2006	НТБ (ЭЭ); НТБ (уч.1); НТБ (уч.3); НТБ (уч.4)
2	Справочник по машиностроительному черчению В.А. Федоренко, А.И. Шошин; Ред. Г.Н. Попов Однотомное издание Машиностроение, Ленингр. отд-ние, 420 с., 1983	НТБ (ЭЭ); НТБ (уч.1); НТБ (уч.4); НТБ (уч.6); НТБ (чз.1)
3	Точка, прямая, плоскость Т.И. Беляева, В.А. Калинов, И.Ф. Куколева Однотомное издание МИИТ,Каф. "Автоматизированное проектирование и графическое моделирование", 40 с., 2007	НТБ (ЭЭ); НТБ (уч.2); НТБ (уч.3); НТБ (уч.4); НТБ (уч.6)
4	Гранные поверхности С.Н. Муравьев, Ф.И. Пуйческу, Н.А. Чванова Однотомное издание МИИТ, Каф. "Автоматизированное проектирование и графическое моделирование", 39 с., 2005	НТБ (ЭЭ); НТБ (уч.2); НТБ (уч.3); НТБ (уч.4); НТБ (уч.6)
5	Кривые поверхности С.В. Ларина, С.Н. Муравьев, Ф.И. Пуйческу, Н.А. Чванова Однотомное издание МИИТ, Каф. "Автоматизированное проектирование и графическое моделирование", 2005	НТБ (ЭЭ); НТБ (уч.2); НТБ (уч.3); НТБ (уч.4); НТБ (уч.6)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- http://library.miit.ru/ электронно-библиотечная система Научнотехнической библиотеки МИИТ
 - http://elibrary.ru/ научно-электронная библиотека.
- www.i-exam.ru единый портал интернет тестирования (тесты для самообразования и контроля).
 - поисковые системы: Yandex, Google, Mail.
 - Российская Государственная Библиотека http://www.rsl.ru
- Государственная публичная научно-техническая библиотека России http://www.gpntb.ru
- Всероссийская государственная библиотека иностранной литературы http://www.libfl.ru

- Институт научной информации по общественным наукам Российской академии наук (ИНИОН РАН) http://www.inion.ru.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для выполнения лабораторного курса используются персональные компьютеры.

Лицензионное программное обеспечение:

- Microsoft Windows;
- Microsoft Office:
- Microsoft Security Essentials;
- Tflex:
- Компас3D;
- AutoCad.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
 - 1. Меловая или маркерная доска
- 2 Мультимедийное оборудование (Проектор для вывода изображения на экран для студентов, проектор для вывода изображения на интерактивную доску преподавателя, акустическая система, микрофон).
- 3. Место для преподавателя оснащенное компьютером), беспроводной мышкой и клавиатурой. Аудитория подключена к интернету МИИТ.
 - 4. Учебная аудитория оснащена чертежными столами.
 - 5. Персональные компьютеры 20 шт.
 - 9. Форма промежуточной аттестации:

Экзамен в 1 семестре.

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Машиноведение, проектирование, стандартизация и сертификация»

В.Н. Аверин

Согласовано:

Директор О.Н. Покусаев

Заведующий кафедрой МПСиС В.А. Карпычев

Председатель учебно-методической

д.В. Паринов