МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Начертательная геометрия и компьютерная графика

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Грузовые вагоны

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3409

Подписал: заведующий кафедрой Карпычев Владимир

Александрович

Дата: 24.05.2023

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины (модуля) «Начертательная геометрия и компьютерная графика» является:

- выработка знаний, умений и навыков, необходимых студентам для выполнения и чтения чертежей, выполнение эскизов деталей, а также составление конструкторской и технической документации.

При освоении учебной дисциплины необходимо сформулировать у студентов знания о системе прямоугольного проецирования, развить умения использования методов дисциплины в решении практических задач в различных областях науки и техники; при-вить навыки выполнения и чтения чертежей; овладение способами автоматизированного проектирования чертежей. В плане формирования научного мировоззрения студентов программа призвана способствовать представлению о любой технической конструкции как о совокупности различных геометрических форм и стремлению оптимизировать эти формы.

Задачи освоения учебной дисциплины (модуля) «Начертательная геометрия и компьютерная графика» являются:

- формирование общей геометрической и графической подготовки студента;
- геометрическая, графическая и компьютерная подготовка, формирующая способность студента правильно воспринимать, переосмысливать и воспроизводить графическую информацию;
- формирование способности студента разрабатывать и вести конструкторскую документацию в соответствии с требованиями Единой системы конструкторской документации (ЕСКД), используя средства машинной графики и современных компьютерных технологий.
- обеспечение студента минимумом фундаментальных инженерногеометрических знаний, на базе которых будущий специалист сможет успешно изучать конструкторско-технологические дисциплины, а также овладевать новыми знаниями в области компьютерной графики и геометрического моделирования.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ОПК-2 - Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- виды и назначение конструкторской и технологической документации на изделия машиностроения;
 - методы построения и преобразования ортогональных чертежей;
- основные виды геометрических фигур, с помощью которых формируются технические изделия;
- теоретические основы построения ортогональных и аксонометрических чертежей геометрических фигур.

Уметь:

- строить эскизы и чертежи изделий машиностроения;
- создавать объемные модели изделий машиностроения и строить их чертежи на основе этих моделий;
- строить иллюстративные изображения геометрических фигур и технических изделий по ортогональным чертежам;
- строить развертки поверхностей геометрических фигур и технических изделий;
 - строить изображения геометрических объектов по заданным условиям;
- записывать алгоритм решения поставленных задач на языке символов и устно объяснять ход решения.

Владеть:

- способностью приобретать новые математические и естественнонаучные знания с использованием современных образовательных и информационных технологий;
 - инструментами 2D и 3D графики;
- компьютерными технологиями построения и ведения технической документации;
- одной или несколькими CAD-системами для автоматизированного построения и ведения технической документации на различные изделия;
 - рисунком как средством выражения технической мысли;
 - основами создания графических дизайнов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№ 1	№2	
Контактная работа при проведении учебных занятий (всего):		48	32	
В том числе:				
Занятия лекционного типа		16	0	
Занятия семинарского типа	64	32	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 136 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№ π/π	Тематика лекционных занятий / краткое содержание	
1	Точка, прямая, плоскость.	
	Рассматриваемые вопросы:	
	- предмет инженерной графики;	
	- ортогональные проекции и их свойства;	
	- эпюр точки и ее координаты.	
2	Длина отрезка прямой и углов наклона его к плоскостям проекций.	
	Рассматриваемые вопросы:	
	- прямые частного положения;	

№ π/π	Тематика лекционных занятий / краткое содержание	
	- взаимное расположение двух прямых;	
	- проецирование прямого угла.	
3	Способы задания плоскости.	
	Рассматриваемые вопросы:	
	- эпюр плоскости частного и общего положения;	
	- главные линии плоскости;	
	- точка и прямая, лежащие в плоскости.	
4	Взаимное расположение двух плоскостей.	
	Рассматриваемые вопросы:	
	- взаимное расположение прямой и плоскости;	
	- прямая, перпендикулярная к плоскости.	

4.2. Занятия семинарского типа.

Практические занятия

No			
п/п	Тематика практических занятий/краткое содержание		
1	Ортогональное проецирование точки		
	В результате выполнения практического задания были рассмотрены:		
	- эпюр точки в системе двух и трех плоскостей проекций;		
	- координаты точки.		
2	Плоскость		
	В результате выполнения практического задания были рассмотрены:		
	- способы задания, эпюр плоскости частного и общего положения; - главные линии плоскости;		
	- взаимная принадлежность точки, прямой и плоскости.		
3	Взаимное расположение прямой и плоскости		
	В результате выполнения практического задания были рассмотрены:		
	- параллельность, пересечение, перпендикулярность;		
	- взаимное расположение двух плоскостей.		
4	Способ замены плоскостей проекций		
	В результате выполнения практического задания были рассмотрены:		
	- решение четырёх основных задач способом замены плоскостей проекций.		
5	Способы образования поверхностей, их задание и изображение на эпюрах.		
	В результате выполнения практического задания были рассмотрены:		
	- поверхности вращения и их основные свойства;		
	- каркасный метод решения позиционных задач на поверхности.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Самостоятельное изучение тем лекций.
2	Выполнение расчетно-графической работы.
3	Подготовка к контрольной работе.
4	Подготовка к промежуточной аттестации.

№ п/п	Вид самостоятельной работы
	Подготовка к текущему контролю.
6	Выполнение расчетно-графической работы.
7	Подготовка к контрольной работе.
8	Подготовка к промежуточной аттестации.
9	Подготовка к текущему контролю.

4.4. Примерный перечень тем видов работ

- 1. Примерный перечень тем контрольных работ
- пересечение кривых поверхностей;
- пересечение геометрических фигур;
- эскиз детали;
- рабочий чертеж детали;
- сборочный чертеж устройства.
- 2. Примерный перечень тем расчетно-графических работ
- по заданному варианту построить чертеж пирамиды или призмы с плоскими вырезами;
- по заданному варианту построить чертеж конического или цилиндрического тела со сквозным отверстием, выполнить горизонтальный и профильный разрезы;
- по заданному варианту построить три вида детали, выполнить фронтальный и профильный разрезы, проставить необходимые размеры;
- по заданному варианту построить чертеж условной сборочной единицы соединения двух деталей с помощью шпильки с созданием спецификации этой сборочной единицы;
- по заданному варианту натурной модели сборочной единицы построить:
- 1. эскизы или чертежи всех деталей (кроме стандартных изделий), входящих в состав сборочной единицы;
 - 2. чертеж этой сборочной единицы;
 - 3. спецификацию сборочной единицы.

При оформлении конструкторской документации (чертежи, сборочные чертежи, спецификации) необходимо использовать одну из CAD систем (КОМПАС-3D, AutoCAD, T-FLEX).

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No॒	Библиографическое	Место доступа
п/п	описание	·
1	Начертательная	https://studfile.net/preview/4552996/
	геометрия Крылов Н.Н.,	
	Иконникова Г.С.,	
	Николаев В.Л., Васильев	
	В.Е. Однотомное издание	
	Высш.шк., - 240 с., 2006	
2	Компьютерная	https://academia-
	инженерная графика	moscow.ru/catalogue/149/294102/?ysclid=mejq6l019724736974
	Аверин В.Н. Однотомное	
	издание Издательский	
	центр "Академия", - 224	
	c., 2009	
3	Инженерная графика	https://academia-
	Пуйческу Ф.И и др.	moscow.ru/ftp_share/_books/fragments/fragment_22190.pdf
	Однотомное издание	
	Издательский центр	
	"Академия", - 320 с.,	
	2011	
4	Преобразование эпюра	https://library.miit.ru/bookscatalog/metod/DC-1317.pdf
	при определении	
	размеров плоских	
	геометрических фигур	
	Муравьев С.Н., Чванова	
	Н.А. Однотомное	
	издание РУТ(МИИТ), -	
	32 c., 2020	
5	Пересечение	https://library.miit.ru/bookscatalog/metod/DC-826.pdf
	пространственных	
	обьектов Ларина С.В.,	
	Муравьев С.Н, Чванова	
	Н.А. Однотомное	
	издание РУТ(МИИТ), -	
	77 c., 2022	
6	Нанесение размеров на	https://library.miit.ru/bookscatalog/upos/DC-1641.pdf
	чертежах изделий	
	машиностроения Аверин	
	В.Н. и др. Однотомное	
	издание РУТ(МИИТ), -	
	46 c., 2023	

7	Резьбовые соединения	https://library.miit.ru/bookscatalog/03-44059.pdf
	Аверин В.Н. и др.	
	Однотомное издание	
	РУТ(МИИТ), - 72 с. ,	
	2016	
8	Особенности построения	https://library.miit.ru/bookscatalog/upos/DC-1643.pdf
	изображений тел и	
	деталей на	
	ортогональных чертежах	
	Аверин В.Н. и др.	
	Однотомное издание	
	РУТ(МИИТ), - 16 с.,	
	2023	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- http://library.miit.ru/ электронно-библиотечная система Научнотехнической библиотеки МИИТ;
 - http://elibrary.ru/ научно-электронная библиотека;
- www.i-exam.ru единый портал интернет тестирования (тесты для самообразования и контроля);
 - поисковые системы: Yandex, Google, Mail;
 - российская Государственная Библиотека http://www.rsl.ru;
- государственная публичная научно-техническая библиотека России http://www.gpntb.ru;
- всероссийская государственная библиотека иностранной литературы http://www.libfl.ru;
- институт научной информации по общественным наукам Российской академии наук (ИНИОН РАН) http://www.inion.ru.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для выполнения лабораторного курса используются:

- персональные компьютеры;
- лицензионное программное обеспечение:

Microsoft Windows, Microsoft Office, Microsoft Security Essentials ,Tflex, Компас3D, AutoCad.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
 - 1. Меловая или маркерная доска
- 2. Мультимедийное оборудование (Проектор для вывода изображения на экран для студентов, проектор для вывода изображения на интерактивную доску преподавателя, акустическая система, микрофон).
- 3. Место для преподавателя оснащенное компьютером, беспроводной мышкой и клавиатурой. Аудитория подключена к интернету МИИТ.
 - 4. Учебная аудитория оснащена чертежными столами.
 - 5. Персональные компьютеры.
 - 9. Форма промежуточной аттестации:

Зачет в 1, 2 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Машиноведение, проектирование, стандартизация и сертификация»

В.Н. Аверин

Согласовано:

Заведующий кафедрой ВВХ Г.И. Петров

Заведующий кафедрой МПСиС В.А. Карпычев

Председатель учебно-методической

комиссии С.В. Володин