## МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)



Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.02 Наземные транспортно-технологические комплексы,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

#### Новые конструкционные материалы

Направление подготовки: 23.04.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Сервис транспортно-технологических

комплексов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 8777

Подписал: заведующий кафедрой Куликов Михаил Юрьевич

Дата: 01.06.2022

#### 1. Общие сведения о дисциплине (модуле).

Целью дисциплины является формирование у студентов знаний, умений и навыков в области новых конструкционных материалов.

Задачи дисциплины:

- формирование знаний о классификации, структуре, свойствах и применении новых композиционных конструкционных материалов;
- подготовка студентов к деятельности в соответствии с квалификационной характеристикой магистра по направлению, в том числе формирование умений по осуществлению выбора оптимального состава и технологии производства новых конструкционных материалов с целью получения свойств отвечающих эксплуатационным свойствам изделий;
- отработка новых технологий изготовления новых конструкционных материалов.

#### 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

**ПК-2** - Способен к участию в процессах разработки технологической документации, выбора инновационных материалов и оборудования при производстве, ремонте и сервисном обслуживании наземных транспортнотехнологических комплексов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

#### Знать:

цели и основополагающие приемы получения существующих металлических и неметаллических машиностроительных материалов; виды и способы обработки материалов при изготовлении деталей в машиностроении; классификацию и рациональные методы получения и машиностроительных материалов.

#### Уметь:

разрабатывать технологические процессы получения заготовок, полуфабрикатов и готовых изделий, обработки материалов различными методами и способами.

#### Владеть:

основами реализации технологических процессов получения и обработки материалов, производства заготовок и готовых изделий.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

| Тип учебных занятий                                       | Количество |      |
|-----------------------------------------------------------|------------|------|
|                                                           | часов      |      |
|                                                           | Всего      | Сем. |
|                                                           |            | №2   |
| Контактная работа при проведении учебных занятий (всего): | 50         | 50   |
| В том числе:                                              |            |      |
| Занятия лекционного типа                                  | 16         | 16   |
| Занятия семинарского типа                                 | 34         | 34   |

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 130 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
  - 4. Содержание дисциплины (модуля).
  - 4.1. Занятия лекционного типа.

|                                                                                                                                   | T                                                                                               |  |                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------|
| <b>√</b> о<br>1/п                                                                                                                 | Тематика лекционных занятий / краткое содержание                                                |  |                                                                                         |
| 11                                                                                                                                |                                                                                                 |  |                                                                                         |
|                                                                                                                                   | Тема 1: Введение. Основные термины и определения. Классификация новых конструкционных           |  |                                                                                         |
|                                                                                                                                   | материалов.                                                                                     |  |                                                                                         |
|                                                                                                                                   | Рассматриваемые вопросы:                                                                        |  |                                                                                         |
|                                                                                                                                   | - стали и сплавы с особыми физическими свойствами – магнитные и немагнитные стали и сплавы,     |  |                                                                                         |
|                                                                                                                                   | аморфные сплавы, сплавы с высоким электрическим сопротивлением, сплавы с эффектом памяти        |  |                                                                                         |
|                                                                                                                                   | формы и т.д.);                                                                                  |  |                                                                                         |
|                                                                                                                                   | - цветные металлы и сплавы – алюминий и сплавы на его основе (деформирующиеся и литейные;       |  |                                                                                         |
|                                                                                                                                   | упрочняемые и неупрочняемые термической обработкой), медь и сплавы на ее основе (латуни,        |  |                                                                                         |
|                                                                                                                                   | бронзы), титан и сплавы на его основе, подшипниковые сплавы и др.                               |  |                                                                                         |
|                                                                                                                                   | -композиционные материалы с металлической матрицей;                                             |  |                                                                                         |
|                                                                                                                                   | Тема 2: Новые конструкционные материалы и их свойства. Выбор материала. Цена и доступность.     |  |                                                                                         |
|                                                                                                                                   | экспоненциальный рост потребления. Прогноз на будущее                                           |  |                                                                                         |
|                                                                                                                                   | Рассматриваемые вопросы:                                                                        |  |                                                                                         |
|                                                                                                                                   | -онструкционные материалы и их свойства;                                                        |  |                                                                                         |
|                                                                                                                                   | - Выбор материала, цена и доступность, экспоненциальный рост потребления, прогноз на будущее;   |  |                                                                                         |
|                                                                                                                                   | - структура металлов, движущие силы структурных изменений, кинетика изменения структуры, легкие |  |                                                                                         |
|                                                                                                                                   | сплавы, углеродистые стали, легированные стали, роизводство, формование и соединение материалов |  |                                                                                         |
| , , , ,, , ,, ,, , ,, , , , , , , , , , , , , , , , , , , ,                                                                       |                                                                                                 |  |                                                                                         |
|                                                                                                                                   | Тема 3: Композиты. Древесина. Композиты упрочненные частицами, упрочненные волокнами и          |  |                                                                                         |
|                                                                                                                                   | строительные композиты. Фаза матрицы.                                                           |  |                                                                                         |
|                                                                                                                                   | Рассматриваемые вопросы:                                                                        |  |                                                                                         |
|                                                                                                                                   | состав и форма компонентов определены заранее;                                                  |  |                                                                                         |
|                                                                                                                                   | - компоненты присутствуют в количествах, обеспечивающих получение заданных свойств материала;   |  |                                                                                         |
|                                                                                                                                   | - макроструктура материала однородна при неоднородной микроструктуре;                           |  |                                                                                         |
|                                                                                                                                   | - между компонентами, обладающими существенно различными свойствами, существует явная           |  |                                                                                         |
|                                                                                                                                   | граница раздела.                                                                                |  |                                                                                         |
| Тема 4: Волокнистые армирующие элементы. Композиты с металлической матрицей.                                                      |                                                                                                 |  |                                                                                         |
|                                                                                                                                   | Рассматриваемые вопросы:                                                                        |  |                                                                                         |
|                                                                                                                                   | - размерами, профилем и природой исходных материалов матрицы и упрочнитсля;                     |  |                                                                                         |
|                                                                                                                                   | - возможностью создания прочной связи на границе раздела «матрица — упрочнитель»;               |  |                                                                                         |
|                                                                                                                                   | - получением равномерного распределения волокон в матрице;                                      |  |                                                                                         |
|                                                                                                                                   | - возможностью совмещения процессов получения композиционного материала и изготовления из       |  |                                                                                         |
| него деталей.  Тема 5: Керамические композиты, углерод-углеродные композиты и гибридные композиты. Струк керамических материалов. |                                                                                                 |  |                                                                                         |
|                                                                                                                                   |                                                                                                 |  | Рассматриваемые вопросы:                                                                |
|                                                                                                                                   |                                                                                                 |  | - керамические и углерод-углеродные композиционные материалы. Основные свойства, методы |
|                                                                                                                                   | получения и области применения;                                                                 |  |                                                                                         |
|                                                                                                                                   | - основные свойства конструкционные композиционные материалы.                                   |  |                                                                                         |
|                                                                                                                                   |                                                                                                 |  |                                                                                         |
|                                                                                                                                   | Тема 6: Механические свойства керамических материалов. Производство, формование и соединение    |  |                                                                                         |
|                                                                                                                                   | керамических материалов. Цемент и бетон. Строительные композиты                                 |  |                                                                                         |
|                                                                                                                                   | Рассматриваемые вопросы:                                                                        |  |                                                                                         |
|                                                                                                                                   | - общие сведения о керамических строительных материалах и изделиях;                             |  |                                                                                         |
|                                                                                                                                   | - лассификация керамических строительных материалов и изделий. Свойства, применение;            |  |                                                                                         |
|                                                                                                                                   | - сырье для производства керамических материалов и изделий. Классификация, технологические      |  |                                                                                         |
|                                                                                                                                   | свойства;                                                                                       |  |                                                                                         |

- производство керамических строительных материалов и изделий. Общие технологические процессы

# 4.2. Занятия семинарского типа.

# Практические занятия

| №         | Тематика практических занятий/краткое содержание                                                     |  |  |
|-----------|------------------------------------------------------------------------------------------------------|--|--|
| $\Pi/\Pi$ |                                                                                                      |  |  |
| 1         |                                                                                                      |  |  |
|           |                                                                                                      |  |  |
|           | Практическое занятие 1.                                                                              |  |  |
|           | Разрушение твердых тел (теория трещин Гриффитса и Баренблатта, дислокационные механизмы              |  |  |
|           | зарождения трещин, классификация типов разрушения.                                                   |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - основные виды разрушения;                                                                          |  |  |
|           | - зарождение трещины;                                                                                |  |  |
|           | - критерий Гриффитса для роста хрупкой трещины;                                                      |  |  |
|           | - связь характера разрушения со структурой материала.                                                |  |  |
|           | Практическое занятие 2.                                                                              |  |  |
|           | Хрупкое разрушение и вязкость разрушения (Микромеханизмы хрупкого разрушения. Вероятностное          |  |  |
|           | разрушение хрупких материалов).                                                                      |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - разрушение при однократных нагрузках (хрупкое и вязкое разрушение);                                |  |  |
|           | - микромеханизм хрупкого разрушения;                                                                 |  |  |
|           | - условия пластичности и разрушения материалов.                                                      |  |  |
|           | Письтического солителя 2                                                                             |  |  |
|           | Практическое занятие 3. Влияние компонентного состава на свойства нового конструкционного материала. |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - влияние химического состава, фазового и структурного состояния на свойства материалов;             |  |  |
|           | - свойства твердых растворов плавно изменяются при изменении состава;                                |  |  |
|           | - эвтектические сплавы для литья, плавких предохранителей, припоев, подшипниковых сплавов,           |  |  |
|           | которые должны состоять из мягких и твердых составляющих.                                            |  |  |
|           | П                                                                                                    |  |  |
|           | Практическое занятие 4.                                                                              |  |  |
|           | Определение механических свойств новых конструкционных материалов.<br>Рассматриваемые вопросы:       |  |  |
|           | - испытания свойств новых конструкционных материалов;                                                |  |  |
|           | - изучить теоретические сведения о свойствах материалов, методах их испытания для получения          |  |  |
|           | показателей, определяющих их механические свойства;                                                  |  |  |
|           | - изучить устройство и работу разрывной машины и маятникового копра для испытания образцов           |  |  |
|           | материалов                                                                                           |  |  |
|           |                                                                                                      |  |  |
|           | Практическое занятие 5.                                                                              |  |  |
|           | Изучение структуры новых конструкционных материалов.                                                 |  |  |
|           | Рассматриваемые вопросы:                                                                             |  |  |
|           | - изучить основные направления использования новых перспективных материалов;                         |  |  |
|           | - ознакомиться с классификацией конструкционных материалов;                                          |  |  |
|           | - изучить основные требования, предъявляемые к новым конструкционным материалам.                     |  |  |

# 4.3. Самостоятельная работа обучающихся.

| <b>№</b><br>п/п | Вид самостоятельной работы             |  |
|-----------------|----------------------------------------|--|
| 1               | Работа с учебными пособиями (1-3)      |  |
| 2               | Выполнение курсовой работы.            |  |
| 3               | Подготовка к промежуточной аттестации. |  |
| 4               | Подготовка к текущему контролю.        |  |

### 4.4. Примерный перечень тем курсовых работ

- 1 Прочность, твердость, пластичность определение, методы испытаний, единицы измерения. Современные материалы, характеризующиеся наилучшими показателями.
- 2 Влияние типа химической связи и микроструктуры материала на его физико-механические свойства прочность, твердость, пластичность.
- 3 Методы улучшения физико-механических характеристик материалов: термическая, химико-термическая, термомеханическая обработка режимы, условия, достигаемые показатели.
- 4 Современные коррозионностойкие материалы классификация, представители, области применения.
- 5 Основные типы композиционных материалов, общие особенности их свойств и специфические области применения.
- 6 Межфазные взаимодействия в композиционных материалах механизмы, влияние состава компонентов, размера и формы частиц наполнителя и функционального состава его поверхности. Методы получения композитов с заданным размером и однородным распределением дисперсной фазы.
- 7 Размерные эффекты в наноструктурированных системах. Причина зависимости свойств вещества от размера структурных элементов при переходе к нанометровым размерам.
  - 8 Классификация наноматериалов и наноструктурированных систем.
- 9 Методы получения и исследования наноматериалов, наноразмерных функциональных слоев и покрытий.
- 10 Основные характеристики наноматериалов, подходы к их улучшению. Современные и перспективные области применения наноматериалов.
  - 11 Материалы на основе углерода.
  - 12 Радиационно-стойкие материалы.
  - 13 Наноматериалы на основе углерода.
- 14 Механизмы упрочнения металлов и сплавов: упрочнение путём измельчения зерна; увеличение прочности при образовании твёрдых

растворов; деформационное упрочнение.

- 15 Железоникелевые и кобальтовые жаропрочные сплавы
- 16 Суперсплавы на никелевой основе.
- 17 Мартенситостареющие стали.
- 18 Электропроводящие полимеры.
- 19 Аморфные металлы и сплавы.
- 20 Нанокристаллические сплавы.
- 21 Дисперсно-упрочненные композиционные материалы
- 22 Волокнистые композиционные материалы.
- 23 Слоистые композиционные материалы.
- 24 Коррозионностойкие стали и сплавы.
- 25 Хладостойкие стали. Стали и сплавы криогенной техники.
- 26 Металлы и сплавы с памятью формы.
- 27 Износостойкие материалы. Материалы с высокой твёрдостью поверхности. Антифрикционные материалы. Фрикционные материалы.
  - 28 Жаропрочные стали и сплавы.
- 29 Материалы с высокой удельной прочностью. Сплавы на основе титана, бериллия, композиционные материалы.
- 30 Сплавы с заданным температурным коэффициентом линейного расширения. о колеса

# 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

| <b>№</b><br>п/п | Библиографическое описание                                                                                                                                                                                  | Место доступа                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1               | Новые конструкционные материалы: учебное пособие Кузнецов В. Г., Аминова Г. А. Учебное пособие Казанский национальный исследовательский технологический университет, 472 стр., ISBN 978-5-7882-2812-9, 2020 | https://e.lanbook.com/book/196133<br>(дата обращения: 01.09.2022) Текст:<br>электронный |
| 2               | Новые конструкционные материалы: Лабораторный практикум Ковтунов А. И., Хохлов Ю. Ю., Мямин С. В. Учебное пособие Тольяттинский государственный университет, 43 стр., ISBN 978-5-8259-1124-3, 2016          | https://e.lanbook.com/book/140188 (дата обращения: 01.09.2022). Текст: электронный      |

| 3 | Технологии наукоемких машиностроительных        | https://e.lanbook.com/book/212423#180 |
|---|-------------------------------------------------|---------------------------------------|
|   | производств Должиков В. П. Учебное пособие      | (дата обращения: 01.09.2022). Текст:  |
|   | Издательство "Лань", 304 стр., ISBN 978-5-8114- | электронный.                          |
|   | 2393-4, 2022                                    |                                       |

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://www.library.ru/ информационно-справочный портал Проект Российской государственной библиотеки.
- 3. http://tehmasmiit.wmsite.ru/ информационно-справочный портал кафедры ТТМиРПС
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Компьютеры на рабочих местах в компьютерном классе должны быть обеспечены стандартными программными продуктами Microsoft.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная лаборатория для проведения групповых занятий (лабораторных и/или практических)

Примерный перечень материально-технической базы: испытательные машины и приборы, комплект образцов, учебные плакаты.

9. Форма промежуточной аттестации:

Курсовая работа во 2 семестре. Экзамен во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

## Авторы:

доцент, к.н. кафедры «Технология транспортного машиностроения и ремонта подвижного состава»

А.Ю. Омаров

Согласовано:

Заведующий кафедрой ТТМиРПС

М.Ю. Куликов

Председатель учебно-методической

комиссии С.В. Володин