МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИТТСУ

П.Ф. Бестемьянов

16 июня 2021 г

Кафедра «Технология транспортного машиностроения и ремонта

подвижного состава»

Фоля Татьяна Ивановна Автор

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Новые технологии формообразования

Направление подготовки: 15.04.01 – Машиностроение Магистерская программа: Технология машиностроения Квалификация выпускника: Магистр Форма обучения: заочная Год начала подготовки 2021

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 10 01 июня 2021 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 4 28 апреля 2021 г.

Заведующий кафедрой

С.В. Володин

М.Ю. Куликов

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 87771

Подписал: Заведующий кафедрой Куликов Михаил Юрьевич

Дата: 28.04.2021

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью дисциплины «Новые технологии формообразования деталей подвижного состава» является систематическое, логическое и возможно наиболее полное изложение современных научных положений для подготовки магистра, владеющего совокупностью методов, средств, способов и приемов науки и техники, направленных на создание и производство конкурентоспособной машиностроительной продукции

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Новые технологии формообразования" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Основы теории надежности технологических процессов в машиностроении:

Знания: основные понятия, определения, термины теории надежности

Умения: выбирать приемы, методы, критерии оценки надежности технологических процессов

Навыки: методиками оценки текущей надежности

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

2.2.1. Научные основы проектирования, технологии изготовления и применения специальных абразивных инструментов

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПК-1 Способен к участию в процессах технологического обеспечения качества и инновационному управлению машиностроительным производством.	Знать и понимать: цели и методы достижения высокого качества продукции; - сортамент и номенклатуру средств формообразования; - факторы влияющие на выбор поставщиков режущего инструмента Уметь: - способами управления качеством выпускаемой машиностроительной продукции; определять потребность в средствах формообразования для осуществления производственного процесса и оценивать эффективность их применения; Владеть: - разработки режущего инструмента; - принципами конструирования высокопроизводительных технологических процессов, в том числе и для автоматизированного машиностроительного производства.

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

5 зачетных единиц (180 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количество часов		
Вид учебной работы	Всего по учебному плану	Семестр 2	Семестр 3
Контактная работа	40	10,25	30,35
Аудиторные занятия (всего):	40	10	30
В том числе:			
лекции (Л)	4	4	0
практические (ПЗ) и семинарские (С)	26	6	20
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	10	0	10
Самостоятельная работа (всего)	127	58	69
Экзамен (при наличии)	9	0	9
ОБЩАЯ трудоемкость дисциплины, часы:	180	72	108
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	5.0	2.0	3.0
Текущий контроль успеваемости (количество и вид текущего контроля)	КР (1), КРаб (1), ПК1	КРаб (1), ПК1	КР (1), КРаб (1), ПК1
Виды промежуточной аттестации (экзамен, зачет)	3Ч, ЭК	3Ч	ЭК

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

				Виды у	чебной де	ятельност	ги в часах	/	Формы
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	B TOM	числе инт	ерактивно С.Б.	а форме	Всего	текущего контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
1	2	Раздел 1 Основные понятия о генеративных технологиях	4		6		58	68	КРаб, ПК1
2	2	Раздел 11 зачёт						4	3Ч
3	3	Раздел 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии		10	20		69	99	КР, КРаб, ПК1
4	3	Экзамен						9	ЭК
5		Всего:	4	10	26		127	180	

4.4. Лабораторные работы / практические занятия

Практические занятия предусмотрены в объеме 26 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	2	РАЗДЕЛ 1 Основные понятия о генеративных технологиях	Основные положения при выборе метода получения и материала детали.	6
2	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии	Проектирование трехмерной модели для получения заготовки различными методами	20
		1	ВСЕГО:	26/0

Лабораторные работы предусмотрены в объеме 10 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии	Проектирование трехмерной модели для получения заготовки на 3D принтере	4
2	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии	Проектирование трехмерной модели для получения заготовкина установке Modela MDX-20	6
	L		ВСЕГО:	10/0

4.5. Примерная тематика курсовых проектов (работ)

Курсовая работа является технологической работой студентов, в которой они должны найти отражение достижений научно-технического прогресса в машиностроении. Проект по курсу «Новые технологии формообразования» выполняется после изучения таких тем, таких как: теория машин и механизмов, детали машин, сопротивление материалов, взаимозаменяемости и т.п. После изучения механизмов привода металлорежущих станков: главного движения и подач, гидро-, пневмо- и электрооборудования, деталей и узлов металлорежущих станков. Остальные разделы курса читаются параллельно с выполнением курсовйработыовных направления:
- проектирование формообразования элементов узла, агрегата, систем подвижного состава

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины осуществляется в форме практических занятий. Практические занятия организованы с использованием технологий развивающего обучения. Часть практического курса выполняется в виде традиционных практических занятий (объяснительно-иллюстративное решение задач). Остальная часть практического курса проводится с использованием интерактивных (диалоговых) технологий, в том числе разбор и анализ конкретных ситуаций, электронный практикум (решение проблемных поставленных задач с помощью современной вычислительной техники и исследование моделей).

Самостоятельная работа студента организована с использованием традиционных видов работы. К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям, подготовка к текущему и промежуточному контролю.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания для оценки умений и навыков.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	2	РАЗДЕЛ 1 Основные понятия о генеративных технологиях	Самостоятельный обзор основных понятий о генеративных технологиях	58
2	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии	Самостоятельный обзор технологий на основе фотополимеризации	18
3	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии	Самостоятельный обзор технологий тепловой обработки твёрдых материалов	18
4	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные технологии	3D технологий прототипирования	18
5	3	РАЗДЕЛ 8 Рассмотрение и оценка технологий на основе фотополимеризации, тепловой обработки твёрдых материалов, 3D технологий прототипирования. Интегрированные генеративные	Интегрированные генеративные технологии	15

	технологии		
		ВСЕГО:	127

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Прототипирование. Практическое руководство	Варфел Т.	Манн, Иванов и Фербер, 2013 http://library.miit.ru/	Все разделы
2	Методические указания по лабораторному практикуму на установке Modela MDX-20 для обучающихся по направлению подготовки магистратуры 15.04.01 Машиностроение. Технология машиностроения. Для заочной формы обучения.	А.П. Попов, Ю.Ю. Комаров	М.:Издатель ООО "Издательский дом Центросоюза", 2016 http://tehmasmiit.wmsite.ru/kafedrattmirps/b-i-b-l-i/	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
3	Введение в сварочные технологии	Козловский С.Н.	Лань, 2013 http://library.miit.ru/	Все разделы
4	Холодное газодинамическое напыление	Алхимов А.П., Клинков С.В., Косарев В.Ф., Фомин В.М.	Физматлит, 2009 http://library.miit.ru/	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://www.library.ru/ информационно-справочный портал Проект Российской государственной библиотеки.
- 3. http://tehmasmiit.wmsite.ru/kafedra-ttmirps/b-i-b-l-i/ электронная библиотека кафедры ТТМ и РПС

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены стандартными

лицензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже Microsoft Office 2007 (2013).

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения аудиторных занятий и самостоятельной работы требуется:

- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET и INTRANET (для осуществления консультаций в интерактивном режиме)
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
- 3. Компьютерный класс с кондиционером. Рабочие места студентов в компьютерном классе, подключённые к сетям INTERNET и INTRANET
- 4. Для проведения практических занятий: компьютерный класс; кондиционер; компьютеры с минимальными требованиями Pentium 4, ОЗУ 4 ГБ, HDD 100 ГБ, USB 2.0.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе. Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч он может задать лектору интересующие его вопросы.

Выполнение практических заданий служит важным связующим звеном между теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

При подготовке магистра важны не только серьезная теоретическая подготовка, знание основ новых технологий формообразования, но и умение ориентироваться в разнообразных практических ситуациях, ежедневно возникающих в его деятельности. Этому способствует форма обучения в виде практических занятий. Задачи практических занятий: закрепление и углубление знаний, полученных на лекциях и приобретенных в процессе самостоятельной работы с учебной литературой, формирование у обучающихся умений и навыков работы с исходными данными, научной литературой и специальными документами. Практическому занятию должно предшествовать ознакомление с лекцией на соответствующую тему и литературой, указанной в плане этих занятий. Самостоятельная работа может быть успешной при определенных условиях, которые необходимо организовать. Ее правильная организация, включающая технологии отбора целей, содержания, конструирования заданий и организацию контроля, систематичность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систематизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а

также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что- то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.