МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая энергетика

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 06.06.2023

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Общая энергетика» является:

- формирование научного знания и понимания физической сути процессов

получения, передачи и преобразования энергии;

- выработка понимания проблем рационального использования энергетических и материальных ресурсов, развития экологически безопасных способов получения энергии.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-1** Способен организовывать и выполнять работы по монтажу, эксплуатации, техническому обслуживанию, ремонту и модернизации объектов системы электроснабжения железных дорог на основе знаний об особенностях функционирования её основных элементов и устройств, а так же правил технического обслуживания и электробезопасности;
- **ПК-2** Способен осуществлять организационно-техническое, административно-правовое и финансово-экономическое регулирование процессов передачи электроэнергии потребителям с соблюдением критериев надежности электроснабжения, параметров качества электроэнергии и её эффективного использования и экономного расходования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

-типы электростанций и особенности их технологическо-го цикла для задач производства тепловой и электрической энергии; —принципы выполнения работы основного теплотехниче-ского и электрического оборудования электростанций; —принципы построения и эксплуатации систем передачи и распределения электрической энергии;

Уметь:

-анализировать структуру затрат на производство элек-трической и тепловой энергии; -использовать методы оценки основных видов энергоресурсов и преобразования их в электрическую и тепловую энергию;

Владеть:

анализом технологических схем производства электриче-ской и тепловой

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество	
	часов	
	Всего	Сем.
		№4
Контактная работа при проведении учебных занятий (всего):	84	84
В том числе:		
Занятия лекционного типа	34	34
Занятия семинарского типа	50	50

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 60 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

140		
№ п/п	Тематика лекционных занятий / краткое содержание	
	Обина арадания а знарравистома	
	Общие сведения о энергосистеме Рассматриваемые вопросы:	
	нассматриваемые вопросы:принципиальная схема генератора и трансформатора;	
	 принципиальная схема генератора и трансформатора; организация производства, передачи и потребления электрической энергии; 	
	 - организация производства, передачи и потреоления электрической энергии, - основные понятия по ПУЭ и ПТЭЭП. 	
2	Способы производства электрической и тепловой энергии	
	Рассматриваемые вопросы:	
	- тепловые станции;	
	- паровые турбины;	
	- гидротурбины;	
3	Передача электрической энергии.	
	Рассматриваемые вопросы:	
	- классификация электрических сетей;	
	- конструктивная часть ВЛ;	
4	Технологическая схема преобразования энергии на ТЭС.	
	Рассматриваемые вопросы:	
	- цикл Ренкина;	
	- оборудование ТЭС;	
	- топливо ТЭC	
	Проблемы экологии ТЭС	
	Рассматриваемые вопросы:	
	- выбросы ТЭС;	
	- тепловой режим работы оборудования	
	Тепловые конденсационные электрические станции. Теплоэлектроцентрали.	
	Рассматриваемые вопросы:	
	- термодинамический цикл;	
	- КПД ТЭС; - комбинированная выработка электрической и тепловой энергии	
	Понятие энергии, единицы ее измерения.	
-	Рассматриваемые вопросы:	
	- система СИ;	
	- внесистемные единицы измерения	
	Первичные энергоресурсы:	
	Рассматриваемые вопросы:	
	- запасы топлива;	
	- понятие условного топлива	
	Гидравлические электрические станции.	
_	Рассматриваемые вопросы:	
	- классификация ГЭС;	
	- горизонт верхнего и нижнего бъефа;	
	- вопросы экологии ГЭС;	
	- гидроэнергетические установки.	
10	Атомные электрические станции.	
	Рассматриваемые вопросы:	
	- принцип работы АЭС;	
	- устройство ядерного реактора на тепловых нейтронах.	
	Схемы АЭС с реакторами различных типов	
	Рассматриваемые вопросы:	
	- Схема АЭС с реактором типа ВВЭР;	

$N_{\underline{0}}$	T	
п/п	Тематика лекционных занятий / краткое содержание	
	- Схема АЭС с реактором типа РБМК;	
	- Схема АЭС с реактором типа БН	
12	Нетрадиционные возобновляемые источники энергии.	
	Рассматриваемые вопросы:	
	- типы источников энергии;	
	- преимущества и недостатки их использования	
13	Использование солнечной энергии.	
	Рассматриваемые вопросы:	
	- фотоэффект;	
	- фототермические устройства	
14	Использование энергии мирового океана	
	Рассматриваемые вопросы:	
	- волновые электростанции;	
	- приливные электростанции	
15	Использование тепловой энергии земли	
	Рассматриваемые вопросы:	
	- геотермальные ТЭС;	
	- особенности геотермальных источников энергии	
16	Использование энергии биомассы	
	Рассматриваемые вопросы:	
	- экологическая сторона;	
17	- устройство и эксплуатация метан-танка	
17	Водородная энергетика	
	Рассматриваемые вопросы:	
	- экологическая составляющая производства водорода;	
	- схемы использования водорода;	
	- классификация водорода	

4.2. Занятия семинарского типа.

Лабораторные работы

$N_{\underline{0}}$	Наименование лабораторных работ / краткое содержание	
п/п	таименование наобраторных работ / краткое содержание	
1	Определение коэффициента теплоотдачи при естественной конвекции около	
	горизонтального цилиндра	
	В результате выполнения работы у студента формируются навыки выполнения расчета коэффициента	
	теплоотдачи	
2	Определение коэффициента теплопроводности методом плоской стенки.	
	В результате выполнения работы у студента формируются навыки выполнения расчета коэффициента	
	теплопроводности	
3	Определение коэффициента теплоотдачи при естественной конвекции около	
	вертикального цилиндра	
	В результате выполнения работы у студента формируются навыки выполнения расчета коэффициента	
	теплоотдачи	
4	Исследование теплообмена излучением (нахождение коэффициента излучения и	
	степени черноты тела)	
	В результате выполнения работы у студента формируются навыки выполнения расчета коэффициента	

№ п/п	Наименование лабораторных работ / краткое содержание
	излучения и степени черноты тела
5	Изучение конструкций и принципа работы котельных установок, их основного и вспомогательного оборудования. В результате выполнения работы у студента формируются навыки анализа конструктивных особенностей энергетического оборудования
6	Изучение принципа работы и конструкций паровых и газовых турбин, камер сгорания и компрессоров газотурбинных установок. Конденсационные установки паровых турбин. В результате выполнения работы у студента формируются навыки анализа конструктивных особенностей энергетического оборудования

Практические занятия

	TIPAKTII TOOKIIO SAIDITIM	
№ п/п	Тематика практических занятий/краткое содержание	
1	Понятие «Электрические сети и энергосистемы»	
	В результате работы обучающийся получает навык построения схемы работы элетроэнергетическрй	
	системы.	
2	Параметры и уравнения состояния газов	
	По результатам занятия студент приобретает навык расчета параметров рабочего тела.	
3	Термодинамические процессы. Первый закон термодинамики.	
	Цикл Карно. Термический КПД цикла.	
	По результатам практического занятия студент получает навык определения термического КПД цикла.	
4	Тепловые электрические станции	
	В результате практического занятия студент получает навык определения годового расхода топлива,	
	навык расчета КПД паровых котлов	
5	Передача электрической энергии	
	По результатам практического занятия обучающийся приобретает навык определения типа линии	
	электропередачи, уровня напряжения линии.	
6	Гидроэлектростанции	
	В результате работы на практическом занятии студент получает навык решения задач по определению	
	напора и расхода выбарабываемой на ГЭС электрической энергии.	
7	Атомные электрические станции	
	В результате работы на практическом занятии студент получает навык определения типа реакторов и	
	выделения преимущест и недостатков того или инога типа реакторов.	
8	Нетрадиционные и возобновляемые источники энергии.	
	В результате работы на практическом занятии студент получает навык решения задач по определению	
	мощности ветряной энергоустановки.	
9	Нетрадиционные и возобновляемые источники энергии.	
	По результатам практического занятия обучающийся приобретает навык решения задач по	
	определению характеристик биогенератора.	
10	Условные обозначения элементов электрических схем.	
	По результатам проведения практического занятия студент приобретает навык чтения электрических	
	схем.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	подготовка к лабораторным работам
2	подготовка к практическим занятиям
3	работа с лекционным материалом и литературой
4	Выполнение курсовой работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ (смотри Приложение к рабочей программе)

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Электрические сети и энергосистемы. Учебное пособие для	
	студентов специализации «Электроснабжение железных	
	дорог» 363 с. ISBN 978-5-89035-813-4 Ковалев И.Н.	
	Учебное пособие 2014	
1	Электрические сети и энергосистемы - 327 с. Караев	
	Р.И.,Волобринскй С.Д. 1988	
2	Электрические сети: Сборник задач - 215 с. Петренко Л.И.	
	1985	
3	Матричный метод анализа электрических цепей - 231 с.	
	Мельников Н.А. 1972	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://scbist.com - СЦБИСТ Железнодорожный информационный портал: Фотоматериалы, новая техника, информационные материалы, вопросы и ответы. Информационный портал Научная электронная библиотека (www.elibrary.ru) Научно-техническая eLIBRARY.RU библиотека РУТ (http://library.miit.ru) Российская Государственная (МИИТ) Библиотека http://www.rsl.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Меловая (маркерная) доска или проектор Лабораторный комплекс по дисциплине Общая энергетика

9. Форма промежуточной аттестации:

Курсовая работа в 4 семестре. Экзамен в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры

«Электроэнергетика транспорта» А.С. Соловьева

Согласовано:

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин