МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая энергетика

Направление подготовки: 13.03.02 Электроэнергетика и электротехника

Направленность (профиль): Электроснабжение

Форма обучения: Очно-заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 3221

Подписал: заведующий кафедрой Шевлюгин Максим

Валерьевич

Дата: 04.09.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Общая энергетика» является:

- формирование научного знания и понимания физической сути процессов

получения, передачи и преобразования энергии;

- выработка понимания проблем рационального использования энергетических и материальных ресурсов, развития экологически безопасных способов получения энергии.

Задачи дисциплины:

- сформировать у студентов общие теоретические знания в области энергетики;
- ознакомить с принципами технологического производства электроэнергии, включая нетрадиционные источники энергии;
- научить студентов правильному подходу к преобразованию, распределению и передачи электроэнергии потребителям и в энергосистему;
- ознакомить студентов с понятием энергетических ресурсов, в том числе возобновляемых и невозобновляемых энергоресурсов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-3 - Способен осуществлять организационно-техническое, административно-правовое и финансово-экономическое регулирование процессов передачи электроэнергии потребителям с соблюдением критериев надежности электроснабжения, параметров качества электроэнергии и её эффективного использования и экономного расходования.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

—типы электростанций и особенности их технологическо-го цикла для задач производства тепловой и электрической энергии;—принципы выполнения работы основного теплотехниче-ского и электрического оборудования электростанций;—принципы построения и эксплуатации систем передачи и распределения электрической энергии;

Уметь:

-анализировать структуру затрат на производство элек-трической и тепловой энергии; -использовать методы оценки основных видов энергоресур-сов и преобразования их в электрическую и тепловую энергию;

Владеть:

анализом технологических схем производства электриче-ской и тепловой энергии

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание			
Π/Π				
1	Общие сведения о энергосистеме			
	Рассматриваемые вопросы:			
	- принципиальная схема генератора и трансформатора;			
	- организация производства, передачи и потребления электрической энергии;			
	- основные понятия по ПУЭ и ПТЭЭП.			
2	Способы производства электрической и тепловой энергии			
	Рассматриваемые вопросы:			
	- тепловые станции;			
	- паровые турбины;			
	- гидротурбины;			
3	Передача электрической энергии.			
	Рассматриваемые вопросы:			
	- классификация электрических сетей;			
	- конструктивная часть ВЛ;			
4	Технологическая схема преобразования энергии на ТЭС.			
	Рассматриваемые вопросы:			
	- цикл Ренкина;			
	- оборудование ТЭС;			
	- топливо ТЭС			
5	Гидравлические электрические станции.			
	Рассматриваемые вопросы:			
	- классификация ГЭС;			
	- горизонт верхнего и нижнего бъефа;			
	- вопросы экологии ГЭС;			
	- гидроэнергетические установки.			
6	Атомные электрические станции.			
	Рассматриваемые вопросы:			
	- принцип работы АЭС;			
	- устройство ядерного реактора на тепловых нейтронах.			
7	Нетрадиционные возобновляемые источники энергии.			
	Рассматриваемые вопросы:			
	- типы источников энергии;			
	- преимущества и недостатки их использования			
8	Использование энергии мирового океана			
	Рассматриваемые вопросы:			
	- волновые электростанции;			
	- приливные электростанции			

4.2. Занятия семинарского типа.

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание
1	Параметры и уравнения состояния газов
	По результатам занятия студент приобретает навык расчета параметров рабочего тела.
2	Термодинамические процессы. Первый закон термодинамики.
	Цикл Карно. Термический КПД цикла.

$N_{\underline{0}}$	Томатууча удамдуучаалуу зауудтуу /удалууа а оо устуучу		
п/п	Тематика практических занятий/краткое содержание		
	По результатам практического занятия студент получает навык определения термического КПД		
	цикла.		
3	Тепловые электрические станции		
	В результате практического занятия студент получает навык определения годового расхода		
	топлива, навык расчета КПД паровых котлов		
4	Передача электрической энергии		
	По результатам практического занятия обучающийся приобретает навык определения типа линии		
	электропередачи, уровня напряжения линии.		
5	Гидроэлектростанции		
	В результате работы на практическом занятии студент получает навык решения задач по		
	определению напора и расхода выбарабываемой на ГЭС электрической энергии.		
6	Атомные электрические станции		
	В результате работы на практическом занятии студент получает навык определения типа реакторов		
	и выделения преимущест и недостатков того или инога типа реакторов.		
7	Нетрадиционные и возобновляемые источники энергии.		
	В результате работы на практическом занятии студент получает навык решения задач по		
	определению мощности ветряной энергоустановки.		
8	Нетрадиционные и возобновляемые источники энергии.		
	По результатам практического занятия обучающийся приобретает навык решения задач по		
	определению характеристик биогенератора.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы		
1	работа с лекционным материалом и литературой		
2	подготовка к практическим занятиям		
3	Подготовка к промежуточной аттестации.		
4	Подготовка к текущему контролю.		

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Степанов, В. С. Общая энергетика: учебное	https://e.lanbook.com/book/216944
	пособие / В. С. Степанов, Т. Б. Степанова, Н. В.	(дата обращения: 14.02.2024).
	Старикова. — 2-е изд., перераб. и доп. — Иркутск	
	: ИРНИТУ, 2019. — 130 с.	
2	Крежевский, Ю. С. Общая энергетика: учебное	https://e.lanbook.com/book/165046
	пособие / Ю. С. Крежевский. — Ульяновск :	(дата обращения: 14.02.2024).
	УлГТУ, 2014. — 124 с. — ISBN 978-5-9795-1291-	
	4.	

3	Руцкий, В. М. Общая энергетика: учебное	https://e.lanbook.com/book/130349
	пособие / В. М. Руцкий, А. А. Комолов. — Самара	(дата обращения: 14.02.2024).
	: СамГУПС, 2014. — 94 с.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. Информационный портал Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)
 - 2. Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)
 - 3. Российская Государственная Библиотека (http://www.rsl.ru)
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Маркерная доска или проектор.

Лабораторный комплекс по дисциплине Общая энергетика

9. Форма промежуточной аттестации:

Зачет во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры

«Электроэнергетика транспорта» А.С. Соловьева

Согласовано:

Заведующий кафедрой ЭЭТ М.В. Шевлюгин

Председатель учебно-методической

комиссии С.В. Володин