МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 27.03.04 Управление в технических системах, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Оптимальное управление

Направление подготовки: 27.03.04 Управление в технических системах

Направленность (профиль): Системы, методы и средства цифровизации и

управления

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 2053

Подписал: заведующий кафедрой Баранов Леонид Аврамович Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

освоения учебной дисциплины (модуля) Оптимальное управление является изучение принципов построения Оптимальных и адаптивных систем управления и применение программируемых средств, реализующих алгоритмы моделирования и оптимизации проектируемых систем управления. В результате изучения дисциплины студенты должны научиться использовать программные средства и аналитические методы в решении задач оптимального управления и исследования адаптивных систем управления. Основной целью изучения учебной дисциплины «Оптимальное управление» является формирование у обучающегося компетенций для следующих видов деятельности: проектно-конструкторской; исследовательской.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач (в соответствии с типами задач профессиональной деятельности): Проектно-конструкторская деятельность: сбор и анализ исходных данных для расчета и проектирования устройств и систем автоматизации и управления; расчет и проектирование отдельных блоков и устройств систем автоматизации и управления. исследовательская деятельность: анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования; проведение экспериментов c вычислительных использованием стандартных программных средств с целью получения математических моделей процессов и объектов автоматизации и управления.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-6** Способен осуществлять сбор и анализ исходных данных для формулирования задач разработки, расчета и проектирования систем и средств автоматизации и управления;
- **ПК-10** Способен выявлять, формализовать и решать задачи автоматического управления в транспортных системах.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные тенденции развития современной электроники и вычислительной техники, применяемой в системах автоведения поездов.
- разработки, расчета и проектирования систем и средств автоматизации и управления.

Уметь:

- разрабатывать и формулировать техническое задание для проектирования автоматизированной системы управления и (или) её составляющих.
- выполнять документирование и моделирование бизнес-процессов и технологических процессов объекта автоматизации.
- применять современные средства проектирования при разработке систем автоматического управления движением поездов.

Владеть:

- навыками современных информационных технологий для проектирования и исследования систем автоведения поездов.
- навыками анализа существующих разработок систем и средств автоматизации и управления; формулирует критерии качества; обобщает выводы.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации

образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No			
	Тематика лекционных занятий / краткое содержание		
п/п			
1	Постановка задачи оптимального управления		
	Рассматриваемые вопросы:		
	- Общие сведения об оптимальных, адаптивных и самонастраивающихся системах.		
	- Краткая историческая справка.		
	- Примеры постановки задач оптимального управления транспортными объектами.		
2	Оптимальное управление движением поезда		
	Рассматриваемые вопросы:		
	- Оптимальное управление двигателем поворота платформы экскаватора;		
	- задачи о безударной стыковке двух ТСЛ, управление двигателем лебедки портового крана и др.		
3	Методы решения задач оптимального управления		
	Рассматриваемые вопросы:		
	- Методы классического вариационного исчисления.		
	- Функционал.		
	- Условия экстремума функционала.		
	- Уравнение Эйлера – Лагранжа.		
	- Задача с закрепленными концами.		
	- Задачи на условный экстремум.		
	- Ограничения типа равенств.		
	- Задача Лагранжа		
4	Изопериметрическая задача.		
	Рассматриваемые вопросы:		
	- Ограничения типа неравенств.		
	- Задачи с подвижными концами.		
	- Условия трансверсальности.		
5	Динамическое программирование.		
	Рассматриваемые вопросы:		
	- Постановка задачи.		
	- Уравнение Беллмана.		
	- Алгоритм решения задач оптимального управления методом динамического программирования.		
	- Вычислительный алгоритм метода АКоР.		

No		
п/п	Тематика лекционных занятий / краткое содержание	
6	Пискратии й разраци метода призминеского программирования	
	Дискретный вариант метода динамического программирования. Рассматриваемые вопросы:	
	- Два этапа расчета оптимального управления.	
7		
/	Теория принципа максимума Понтрягина.	
	Рассматриваемые вопросы:	
0	- Примеры: задача набора высоты самолетом, задача оптимальной маршрутизации.	
8	Адаптивные и самонастраивающиеся системы	
	Рассматриваемые вопросы:	
	- Основные положения.	
	- Необходимость создания адаптивных систем управления.	
0	- Использование адаптивных систем	
9	Методы оптимизации в задачах управления.	
	Рассматриваемые вопросы:	
	Градиентные методы.	
	Метод множителей Лагранжа. Методы прямого поиска.	
	Применение методов оптимизации для решения задач оптимального управления.	
10		
10	Динамическое программирование.	
	Рассматриваемые вопросы: Уравнение Беллмана.	
	Методы решения уравнений Беллмана.	
	Применение динамического программирования для решения задач оптимального управления.	
11		
11	Синтез оптимальных систем управления.	
	Рассматриваемые вопросы:	
	Понятие синтеза оптимальных систем.	
	Методы синтеза линейных и нелинейных систем. Примеры синтеза оптимальных систем управления	
12	Примеры синтеза оптимальных систем управления. Оптимальное управление в условиях неопределённости.	
12		
	Рассматриваемые вопросы: Задачи оптимального управления при наличии неопределённости.	
	Методы решения задач оптимального управления в условиях неопределённости.	
	Адаптивное управление.	
13	1-	
13	Оптимальное управление экономическими системами. Рассматриваемые вопросы:	
	Применение методов оптимального управления в экономике.	
	Модели оптимального управления запасами, инвестициями, производственными процессами.	
	Примеры решения экономических задач оптимального управления.	
14	Численные методы решения задач оптимального управления.	
1 1 7	Рассматриваемые вопросы:	
	Рассматриваемые вопросы: Обзор численных методов решения задач оптимального управления.	
	Методы коллокаций, методы прямых, методы вариационного исчисления.	
	Примеры применения численных методов.	
15	Современные тенденции в оптимальном управлении.	
13	Рассматриваемые вопросы:	
	Обзор современных исследований в области оптимального управления.	
	Применение оптимального управления в робототехнике, управлении энергетическими системами,	
	транспортных системах и других областях.	
	Перспективы развития теории оптимального управления.	
	LL	

№ п/п	Тематика лекционных занятий / краткое содержание
16	Математические модели в оптимальном управлении.
	Рассматриваемые вопросы:
	Построение математических моделей динамических систем.
	Линейные и нелинейные модели.
	Примеры моделей в различных областях (техника, экономика, биология и т. д.).

4.2. Занятия семинарского типа.

Лабораторные работы

No			
п/п	Наименование лабораторных работ / краткое содержание		
1	Оптимальные, адаптивные и самонастраивающихся системах.		
	В результате выполнения лабораторной работы студент изучает общие сведения об оптимальных,		
	адаптивных и самонастраивающихся системах.		
2	Задачи оптимального управления транспортными объектами		
	В результате выполнения работы студент рассматривеат основыные примеры постановки задач		
	оптимального управления транспортными объектами.		
3	Оптимальное управление движением поезда		
	В результате выполнения работы студент рассматривает оптимальное управление двигателем		
	поворота платформы экскаватора и изучает задачи о безударной стыковке двух ТСЛ, управление		
	двигателем лебедки портового крана и др.		
4	Классические вариационные исчисления		
	В результате выполнения работы студент рассматривает основные методы классического		
	вариационного исчисления, функционал и основные условия экстремума функционала.		
5	Уравнение Эйлера – Лагранжа.		
	В результате выполнения лабораторной работы студент рассматривает уравнение Эйлера –		
	Лагранжа, задачи с закрепленными концами, задачи на условный экстремум, ограничения типа		
	равенств, задача Лагранжа		
6	Изопериметрическая задача.		
	В результате выполнения работы рассматривает основные ограничения типа неравенств, задачи с		
	подвижными концами и условия трансверсальности.		
7	Динамическое программирование.		
	В результате выполнения работы студент отрабатывает умение в постановке задачи, уравнение		
	Беллмана, построение алгоритма решения задач оптимального управления методом динамического		
	программирования и вычислительный алгоритм.		
8	Метод динамического программирования.		
	В результате работы изучает дискретный вариант метода динамического программирования и		
	рассматривает два этапа расчета оптимального управления.		
9	Примеры		
	В результате выполнения работы студент рассматривает основные примеры: задача набора высоты		
	самолетом, задача оптимальной маршрутизации.		
10	Основные положения.		
	В результате работы студент рассматривает основные положения.		
11	Создание адаптивных систем управления.		
	В результате выполнения лабораторной работы студент отрабатывает умение создавать адаптивные		
	системы управления.		
12	Использование адаптивных систем		
	В результате выполнения работы студент отрабатывает умение использовать адаптивные систем		

Практические занятия

	1		
№ п/п	Тематика практических занятий/краткое содержание		
1	Оптимальных, адаптивных и самонастраивающихся системах		
	В результате выполнения практического занятия студент изучает общие сведения об оптимальных,		
	адаптивных и самонастраивающихся системах и рассматривает краткую историческую справку.		
2	Задача оптимального управления транспортными объектами		
	В результате выполнения работы студент отрабатывает навык постановки задач оптимального		
	управления транспортными объектами.		
3	Уравнение Эйлера – Лагранжа.		
	В результате выполнения работы студет отрабатывает умение по решению уравнения Эйлера –		
	Лагранжа, задачи с закрепленными концами, задачи на условный экстремум, ограничения типа		
	равенств, Задачи Лагранжа.		
4	Динамическое программирование.		
	В результате выполнения работы студент отрабатывает умение в постановки задач, решать		
	уравнение Беллмана, строить алгоритмы решения задач оптимального управления методом		
	динамического программирования и проводить вычислительный алгоритм метода АКоР.		
5	Принцип максимума Понтрягина.		
	В результате выполнения работы студент рассматривает основные примеры: задачи набора высоты		
	самолетом, задачи оптимальной маршрутизации.		
6	Самонастраивающаяся система.		
	В результате работы студент рассматривает необходимость создания адаптивных систем		
	управления и изучает самонастраивающаяся система.		

4.3. Самостоятельная работа обучающихся.

№	Рин сомостоятан ной роботи
Π/Π	Вид самостоятельной работы
1	Изучение дополнительной литературы.
2	Подготовка к практическим занятиям.
3	Подготовка к лабораторным работам.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ π/π	Библиографическое описание	Место доступа
1	Оптимальное по быстродействию управление	НТБ (уч.3)
	нелинейным объектом 2-го порядка А.И.	
	Сеславин, В.И. Урдин; МИИТ. Каф.	
	"Управление и информатика в технических	
	системах" Однотомное издание МИИТ, - 16 с.	
	, 2004	

2	Теория систем и системный анализ в	НТБ (ЭЭ); НТБ (уч.6); НТБ (фб.);
	управлении организациями: Справочник В.А.	НТБ (чз.2)
	Баринов, Л.С. Болотова, В.Н. Волкова; Ред.	
	В.Н. Волкова, А.А. Емельянова; Под Ред. В.Н.	
	Волкова Однотомное издание Финансы и	
	статистика, - 848 с., ISBN 5-279-02933-5, 2006	
3	Дифференциальные и разностные уравнения	https://umczdt.ru/books/1216/62146/
	А.И. Сеславин, Е.А. Сеславина Книга ФГБОУ	
	"УМЦ ЖДТ", - 353 с., ISBN 978-5-89035-928-5	
	, 2016	
4	Оптимальное и адаптивное управление:	https://reader.lanbook.com/book/157184
	Учебное пособие Сердобинцев Ю. П., Кухтик	
	М. П. Волгоградский государственный	
	технический университет с. 112 ISBN 978-	
	5-9948-3552-4 , 2019	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/).

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru).

Образовательная платформа «Юрайт» (https://urait.ru/).

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант».

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/).

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер).

Операционная система Microsoft Windows.

Microsoft Office.

Пакет прикладных программ MATLAB

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

старший преподаватель кафедры «Управление и защита информации»

А.И. Сеславин

Согласовано:

Заведующий кафедрой УиЗИ Л.А. Баранов

Председатель учебно-методической

комиссии С.В. Володин