МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Организация вычислительных машин и систем

Направление подготовки: 09.03.01 Информатика и вычислительная

техника

Направленность (профиль): Вычислительные системы и сети

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 10.10.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины «Организация вычислительных машин и систем» является изучение основ организации и функционирования современных ЭВМ и систем.

Основными задачами дисциплины являются:

- изучение моделей вычислительных машин и систем и принципов их функциональной организации на различной элементной базе;
- получение устойчивых представлений о принципах структурной органи-зации и функционирования аппаратных средств вычислительных машин и систем, включая процессоры, устройства памяти и подсистемы ввода вы-вода;
- приобретение знаний, практических умений и навыков по эксплуатации и проектированию аппаратно-программных компонентов вычислительных машин и систем с использованием стандартных средств проектирования на современной элементной базе.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен инсталлировать программное и аппаратное обеспечение для информационных и автоматизированных систем;
- **ОПК-7** Способен участвовать в настройке и наладке программноаппаратных комплексов;
- **ПК-6** Способность выполнять работы и управлять работами по разработке архитектур и прототипов информационных систем .

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- принципы организации и функционирования аппаратных, программных и программно-аппаратных средств информационных и автоматизированных систем;
 - способы настройки и наладки программно-аппаратных комплексов;
- принципы организации разработки архитектур и прототипов информационных систем.

Уметь:

- инсталлировать программное и аппаратное обеспечение для инфор-

мационных и автоматизированных систем;

- осуществлять выбор, настройку и наладку компонентов программноаппаратных комплексов;
- выполнять работы и управлять работами по проектированию компонентов для информационных систем.

Владеть:

- навыками применения средств инсталляции программного и аппаратного обеспечение информационных и автоматизированных систем;
- методами и средствами настройки и наладки программно-аппаратных комплексов;
- методами и средствами автоматизации проектирования информационных систем на современной элементной базе
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 9 з.е. (324 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов		
	Всего	Семестр	
	DCCIO	№5	№6
Контактная работа при проведении учебных занятий (всего):	160	80	80
В том числе:			
Занятия лекционного типа	80	48	32
Занятия семинарского типа	80	32	48

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 164 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме

контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

1.0	
<u>№</u>	Тематика лекционных занятий / краткое содержание
п/п	
1	СЕМЕСТР 5 Принципы организации ВМ
	Рассматриваемые вопросы:
	- базовые понятия;
	- обзор элементной базы вычислительной техники, современная элементная база;
	- модели вычислительных машин.
2	Принципы организации и функционирования ЭВМ классической архитектуры
	Рассматриваемые вопросы:
	- принцип программного управления и его реализация;
	- операционное устройство как модель построения процессора.
3	Принципы организации и функционирования ЭВМ классической архитектуры
	Рассматриваемые вопросы:
	- принцип хранимой в памяти программы и его реализация;
	- основные устройства ЭВМ и их характеристики.
4	Структурная организация ЭВМ
	Рассматриваемые вопросы:
	- ЭВМ с единым интерфейсом;
	- ЭВМ с множеством интерфейсов.
5	Эволюция развития средств ВТ
	Рассматриваемые вопросы:
	- поколения средств ВТ;
	- механические и электромеханические ВМ, проект аналитической машины Ч. Бэббиджа;
	- классы и поколения ЭВМ.
6	Принципы организации и функционирования процессора
	Рассматриваемые вопросы:
	- способы исполнения команд в процессоре;
	- машинный цикл процессора.
7	Организация прерываний
	Рассматриваемые вопросы:
	- основные этапы прерывания;
	- организация и характеристики систем прерываний;
	- аппаратно-программные средства систем прерываний и способы их применения.
8	Кодирование команд
	Рассматриваемые вопросы:
	- форматы и кодирование команд;
	- команды VLIW и EPIC архитектур;
	- предикаты, префиксы и другие способы настройки команд.

No	
Π/Π	Тематика лекционных занятий / краткое содержание
9	Адресные пространства процессора
	Рассматриваемые вопросы:
	- адресация регистровой памяти;
	- метод регистровых окон;
	- динамическое переименование регистров.
10	Адресные пространства процессора.
	Рассматриваемые вопросы:
	- адресация оперативной памяти;
	- принципы размещения информации в ОП;
	- способы адресации ОП;
	- адресация периферийных устройств.
11	Система команд и машинный язык процессора
	Рассматриваемые вопросы:
	- состав системы команд процессора;
	- проблема семантического разрыва;
	- варианты CISC и RISC процессоров;
	- системы команд и регистровые модели процессоров разных моделей.
12	Структурная организация процессоров.
	Рассматриваемые вопросы:
	- конвейерная организация процессоров;
	- суперскалярная организация процессоров.
13	Принципы многоуровневой организации и функционирования памяти ЭВМ.
	Рассматриваемые вопросы:
	- основные уровни памяти и их характеристики.
14	Классификация запоминающих устройств
	Рассматриваемые вопросы
	- ЗУПВ, ПЗУ, ФЛЭШ;
	- ЗУ с разными способами размещения и поиска информации;
	- способы организации доступа к элементам запоминающего массива;
	- физические принципы построения запоминающего массива.
15	Принципы организации и функционирования оперативной памяти ЭВМ
	Рассматриваемые вопросы:
	- многоблочное и многоабонентное исполнение памяти;
	- организация параллельных обращений в память;
	- способы распределения адресного пространства.
16	Принципы организации и функционирования КЭШ памяти
	Рассматриваемые вопросы:
	- классификация способов повышения быстродействия основной памяти;
	- принципы организации и функционирования КЭШ памяти ;
	- классификация КЭШ памяти по способу записи информации.
17	Структурная организация КЭШ – памяти
1,	Рассматриваемые вопросы:
	- КЭШ – память с полностью ассоциативным распределением, прямым отображением и частично
	ассоциативным распределением;
	- организация многоуровневой КЭШ – памяти;
L	·r ·· ·· · · · · · · · · · · · · · · ·

Ma	
№	Тематика лекционных занятий / краткое содержание
п/п	TOWN TOWN
	- поддержка когерентности КЭШ – памяти, инклюзивная организация КЭШ.
18	Структурная организация КЭШ – памяти.
	Рассматриваемые вопросы:
	- организация многоуровневой КЭШ – памяти;
	- поддержка когерентности КЭШ – памяти, инклюзивная/эксклюзивная организация КЭШ.
19	Виртуализация памяти
	Рассматриваемые вопросы:
	- анализ требований к объему основной памяти современной ЭВМ;
	- способы расширения адресного пространства основной памяти;
	- принцип виртуализации памяти.
20	Динамическое преобразование адреса
	Рассматриваемые вопросы:
	- страничная и сегментно-страничная организация памяти;
	- способы преобразования виртуальных адресов в физические
	- защита памяти.
21	Принципы организации и функционирования системы ввода-вывода
	Рассматриваемые вопросы:
	- программно-управляемый обмен и прямой доступ в память;
	- структурная организация и характеристики систем ввода-вывода.
22	Организация прямого доступа в память
	Рассматриваемые вопросы:
	- принципы организации обменов с использованием контроллеров прямого доступа;
	- структурная организация и принципы функционирования контроллеров прямого доступа;
	- организация процессоров ввода-вывода, канальные программы.
23	Интерфейсы и их классификация
	Рассматриваемые вопросы:
	- принципы организации интерфейсов;
	- основные определения, классификация интерфейсов;
	- типы шин и линий;
	- организация арбитража.
24	Принципы передачи информации в интерфейсах
	Рассматриваемые вопросы:
	- синхронный и асинхронный способы передачи и их сравнение;
	- последовательные интерфейсы.
25	СЕМЕСТР 6 Принципы многоуровневой организации и функционирования памяти
	ЭВМ.
	Рассматриваемые вопросы:
	- основные уровни памяти и их характеристики;
	- классификация запоминающих устройств.
26	Организация ЗУ с разными способами размещения и поиска информации.
	Рассматриваемые вопросы:
	- ЗУ адресного и безадресного типа;
	- ЗУ ассоциативного типа.
27	Принципы организации и функционирования оперативной памяти ЭВМ
	Рассматриваемые вопросы:
	- многоблочное и многоабонентное исполнение памяти;

Тематика лекционных занятий / краткое содержание - организация параллельных обращений в память; - способы распределения адресного пространства. Принципы организации и функционирования КЭШ памяти
- способы распределения адресного пространства.
Принцип г организации и функционирования ИСП памяти
принципы организации и функционирования КЭШ памяти
Рассматриваемые вопросы:
- классификация способов повышения быстродействия основной памяти;
- принципы организации и функционирования КЭШ памяти;
- классификация КЭШ памяти по способу записи информации.
Структурная организация КЭШ – памяти
Рассматриваемые вопросы:
- КЭШ – память с полностью ассоциативным распределением, прямым отображением и частично
ассоциативным распределением;
- организация многоуровневой КЭШ – памяти; ком
- поддержка когерентности КЭШ – памяти, инклюзивная организация КЭШ.
Виртуализация памяти
Рассматриваемые вопросы:
- анализ требований к объему основной памяти современной ЭВМ;
- способы расширения адресного пространства основной памяти;
- принцип виртуализации памяти.
Динамическое преобразование адреса.
Рассматриваемые вопросы:
- страничная и сегментно-страничная организация памяти;
- способы преобразования виртуальных адресов в физические;
- защита памяти.
Принципы организации и функционирования системы ввода-вывода
Рассматриваемые вопросы:
- программно-управляемый обмен и прямой доступ в память; - структурная организация и характеристики систем ввода-вывода.
Организация прямого доступа в память с использованием контроллеров прямого
доступа
Рассматриваемые вопросы: - принципы организации обменов с использованием контроллеров прямого доступа;
- принципы организации обменов с использованием контроллеров прямого доступа, - структурная организация и принципы функционирования контроллеров прямого доступа.
o-p) n-s) pnum op umoudum mapundum 4) madiomposum nom possibos apanoto 2001) mi
Организация прямого доступа в память с использованием процессоров ввода-вывода
Рассматриваемые вопросы:
- распараллеливание операций ввода-вывода.
- организация процессоров ввода-вывода, канальные программы
- структурная организация и принципы функционирования процессоров ввода-вывода
Интерфейсы и их классификация
Рассматриваемые вопросы:
- принципы организации интерфейсов;
- основные определения, классификация интерфейсов;
- типы шин и линий;
- организация арбитража.
Принципы передачи информации в интерфейсах

№ π/π	Тематика лекционных занятий / краткое содержание
	Рассматриваемые вопросы: - синхронный и асинхронный способы передачи и их сравнение; - последовательные интерфейсы.
37	Микроархитектура многоядерного микропроцессора Рассматриваемые вопросы: - принципы структурной организации многоядерного микропроцессора; - дополнительные блоки в составе микропроцессора (графическая подсистема, блок прерываний, КЭШ L3, блок обращений в ОП и др.).
38	Тенденции развития микроархитектуры отечественных микропроцессоров Рассматриваемые вопросы: - обзор отечественных микропроцессоров; - принцип двоичной совместимости и организация микропроцессоров Эльбрус.
39	Принципы структурной организации ЭВМ на многоядерных микропроцессорах Рассматриваемые вопросы: - принципы построения многопроцессорных и многомашинных систем; - кластеры и MPP-системы; - отказоустойчивые ЭВМ.
40	Принципы организации и функционирования ПЭВМ Рассматриваемые вопросы: - структура ПЭВМ с северным и южным мостами; - основные типы интерфейсов и принципы их организации и функционирования; - организация ПЭВМ на многоядерных микропроцессорах.

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	СЕМЕСТР 5 Изучение структурной организации многокристального
	секционированного микропроцессора. Основные блоки микропроцессора и их
	взаимодействие. Организация микротренажера МТ-1804
	В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
2	Изучение приемов работы на микротренажере МТ-1804.Способы загрузки,
	исполнения и отладки микропрограмм.
	В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор, настройку и обслуживание программных, программно-аппаратных средств вычислительных машин.
3	Изучение симулятора микротренажера МТ-1804. Установка симулятора на ПЭВМ.
	Режимы загрузки и исполнения микропрограмм.
	В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор и настройку программных, программно-аппаратных средств вычислительных машин и систем.
4	Изучение приемов работы на симуляторе микротренажера МТ-1804. Способы
	загрузки, исполнения и отладки микропрограмм.
	В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор и

No	
п/п	Наименование лабораторных работ / краткое содержание
	настройку программных, программно-аппаратных средств вычислительных машин и систем.
5	Принципы организации и функционирования центрального процессорного элемента ЦПЭ секционированного микропроцессора. В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
6	Микропрограммирование АЛУ секционированного микропроцессора. Разработка и отладка микропрограмм выполнения в АЛУ простейших арифметических операций В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов информационных систем, инсталляции микропрограммного и программного обеспечения.
7	Микропрограммирование АЛУ секционированного микропроцессора. Разработка и отладка циклических микропрограмм с формированием признаков в АЛУ. В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов информационных систем, инсталляции микропрограммного и программного обеспечения.
8	Принципы организации и функционирования блока микропрограммного управления БМУ секционированного микропроцессора. В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
9	Микропрограммирование УУ секционированного микропроцессора. Изучение способов организации переходов в микропрограммных устройствах управления. В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов информационных систем, инсталляции микропрограммного и программного обеспечения.
10	Микропрограммирование УУ секционированного микропроцессора. Изучение способов организации циклов и микроподпрограмм в микропрограммных устройствах управления. В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов информационных систем, инсталляции микропрограммного и программного обеспечения.
11	Микропрограммирование секционированного микропроцессора. Изучение способов совместного использования блоков БМУ и ЦПЭ для построения процессоров. Разработка алгоритмов для реализации операций машинного цикла процессора. В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
12	Микропрограммирование секционированного микропроцессора. Разработка и кодирование микропрограмм реализации алгоритмов машинного цикла процессора. В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор и настройку программных, программно-аппаратных средств вычислительных машин и систем.
13	Микропрограммирование секционированного микропроцессора Отладка и тестирование микропрограмм реализации алгоритмов машинного цикла процессора В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов информационных систем, инсталляции микропрограммного и программного обеспечения. (Изучение способов совместного использования блоков БМУ и ЦПЭ для построения процессоров) .
14	Изучение принципов организации системы синхронизации секционированного микропроцессора. Временные диаграммы работы секционированного микропроцессора.

No	
п/п	Наименование лабораторных работ / краткое содержание
	В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
15	Снятие и анализ временных диаграмм работы секционированного микропроцессора. В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов процессоров информационных систем.
16	Снятие и анализ микровременных диаграмм работы основных блоков секционированного микропроцессора. В результате выполнения лабораторной работы студент получает навыки разработки архитектур и прототипов процессоров информационных систем.
17	СЕМЕСТР 6 Принципы организации микроконтроллеров. Структурная организация и функционирование микроконтроллера К1986ВЕ92QI. В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
18	Принципы организации микроконтроллеров. Изучение основных блоков в составе микроконтроллера: процессорное ядро, блок синхронизации, системный таймер, блок прерываний. В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
19	Принципы организации микроконтроллеров. Программистская модель микроконтроллера К1986ВЕ92QI, форматы команд и машинный язык. В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных средств вычислительных машин и систем.
20	Изучение программных средств для создания и отладки программ в микроконтроллерах. Основные средства и принципы использования интегрированной среды разработки Keil µVision В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор, настройку и обслуживание программных и программно-аппаратных средств вычислительных машин и систем.
21	Изучение программных средств для создания и отладки программ в микроконтроллерах. Основные этапы создания проектов в среде Keil µVision. В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор, настройку и обслуживание программных и программно-аппаратных средств вычислительных машин и систем.
22	Изучение программных средств для создания и отладки программ в микроконтроллерах. Установка пакета Keil MDK на ПЭВМ лабораторного стенда и его запуск. В результате выполнения лабораторной работы студент получает навыки инсталляции отечественного и иностранного программного обеспечения.
23	Изучение способов исходного задания программ для отладки в интегрированной среде разработки Keil μVision. Язык ассемблера для программирования микроконтроллеров с архитектурой ARM.

No	Наименование лабораторных работ / краткое содержание
п/п	
	В результате выполнения лабораторной работы студент получает знания принципов организации и функционирования аппаратных, программных и программно-аппаратных
	средств вычислительных машин и систем.
24	Создание и запуск проекта в среде Keil µVision в режиме симулятора. Загрузка и
	отладка учебной программы.
	В результате выполнения лабораторной работы студент отрабатывает умения осуществлять выбор, настройку и обслуживание программных и программно-аппаратных средств вычислительных машин и
25	Изучение способов выполнения арифметических операций. Форматы
23	арифметических команд. Разработка программы выполнения операций над 32-
	разрядными беззнаковыми кодами.
	В результате выполнения лабораторной работы студент получает знания
	принципов организации и функционирования аппаратных, программных и программно-аппаратных
	средств вычислительных машин и систем.
26	Изучение способов выполнения арифметических операций. Загрузка и отладка
	программы выполнения операций над 32-разрядными беззнаковыми кодами.
	В результате выполнения лабораторной работы студент получает навыки разработки архитектур и
	прототипов информационных систем.
27	Изучение способов хранения и обработки многобайтных чисел. Разработка
	алгоритма и программы обработки многобайтных чисел по заданному варианту.
	В результате выполнения лабораторной работы студент получает знания
	принципов организации и функционирования аппаратных, программных и программно-аппаратных
28	средств вычислительных машин и систем. Изучение способов хранения и обработки многобайтных чисел. Загрузка и отладка
20	программы обработки многобайтных чисел.
	В результате выполнения лабораторной работы студент получает навыки разработки архитектур и
	прототипов информационных систем.
29	Логические операции над битами многоразрядных слов.
	В результате выполнения лабораторной работы студент получает навыки обращения к битовым
30	переменным и их программная реализация. Логические операции над битами многоразрядных слов. Разработка и отладка
30	операторных программ вычисления булевых функций.
	В результате выполнения лабораторной работы студент получает навыки разработки архитектур и
	прототипов информационных систем.
31	Логические операции над битами многоразрядных слов. Разработка и отладка
	бинарных программ вычисления булевых функций.
	В результате выполнения лабораторной работы студент получает навыки разработки архитектур и
	прототипов информационных систем.
32	Организация подпрограмм Изучение способов организации подпрограмм средствами
	языка ассемблера для микроконтроллера К1986BE92QI.
	В результате выполнения лабораторной работы студент получает навыки разработки архитектур и
	прототипов информационных систем.

Практические занятия

№	Тематика практических занятий/краткое содержание
Π/Π	тематика практических занятии/краткое содержание
1	Принципы структурной организации ЭВМ с использованием много крстальных
	секционированных микропроцессоров
	Основные блоки ЭВМ, распределение адресных пространств памяти и устройств ввода-вывода,
	организация шин адреса, данных и управления.
	В результате выполнения практического задания работы студент получает знания принципов
	организации и функционирования аппаратных, прграммных и программно-аппаратных средств
_	вычислительных машин и систем.
2	Принципы построения процессоров с использованием БИС ЦПЭ и БМУ
	Изучение принципов структурной организации процессоров на базе типовых БИС.
	В результате выполнения практического задания студент отрабатывает умения в выборе, настройке и
_	наладке компонентов программно-аппаратных комплексов.
3	Организация АЛУ и регистровой памяти процессора.
	Изучение принципов структурной организации АЛУ на базе типовых БИС. Разработка структурной
	схемы операционного блока процессора, включающего АЛУ и регистровую память с заданными
	параметрами
	В результате выполнения практического задания студент получает навыки разработки архитектур и
1	прототипов информационных систем.
4	Организация АЛУ и регистровой памяти процессора
	Изучение принципов структурной организации АЛУ на базе типовых БИС. Разработка структурной схемы операционного блока процессора, включающего АЛУ и регистровую память с заданными
	параметрами
	В результате выполнения практического задания студент получает навыки разработки архитектур и
	прототипов информационных систем.
5	Организация устройства управления процессора
	Разработка устройства управления процессора на базе БМУ
	В результате выполнения практического задания студент получает навыки разработки архитектур и
	прототипов информационных
6	Принципы синхронизации устройств в составе процессора
	Разработка схемы синхронизации и начальной установки процессора.
	В результате выполнения практического задания студент получает навыки разработки архитектур и
	прототипов информационных систем.
7	Организация системы прерываний процессора
	Разработка блока прерываний и его подключение к процессору с исполь-зованием
	микропрограммного уровня управления.
	В результате выполнения практического задания студент получает навыки разработки архитектур и
	прототипов информационных систем.
8	Принципы взаимодействия процессора с оперативной памятью и перифе-рийными
	устройствами. Разработка схем подключения памяти и перифе-рийных устройств к
	шинам процессора.
	В результате выполнения практического задания студент получает навыки разработки архитектур и
	прототипов информационных систем.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Изучение дополнительной литературы
2	Подготовка к лабораторным работам.

3	Выполнение курсового проекта.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых проектов

Основными целями курсового проектирования являются:

- умение осуществлять выбор, настройку и наладку компонентов программно-аппаратных комплексов,
- умение выполнять работы и управлять работами по проектированию компонентов для информационных и автоматизированных систем,
 - навык разработки архитектур и прототипов информационных систем,
- навык использования инструментов современных средств автоматизации проектирования на современной элементной базе

Темы курсового проекта:

1. Программируемый логический контроллер ПЛК.

ПЛК представляет собой простейшую специализированную ЭВМ для управления несложными объектами и технологическими процессами. Входными сигналами ПЛК служат сигналы от двоичных датчиков объекта и сигналы прерываний. Выходные сигналы передаются контроллером к исполнительным механизмам. Основными исходными данными для проектирования являются следующие параметры ПЛК (24 варианта):

- Число однобитовых портов ввода и вывода
- Емкость памяти программ
- Емкость памяти данных
- Способ адресации ячеек ПП, ПД, портов ввода и вывода
- Число запросов прерывания
- Способ запоминания состояния ПЛК
- Вариант прерывающей программы
- Элементная база

2. Сопроцессор с архитектурой RISC

Проектируемый сопроцессор СП функционирует параллельно с центральным процессором ЦП и использует общую с ЦП оперативную память ОП. Для организации обращений двух процессоров в общую ОП используется

блок БООП обращений в ОП, в состав которого входит арбитр (АРБ) для разрешения конфликтов при одновременных обращениях процессоров в ОП. Каждый из процессоров имеет собственную систему команд и работает по своей программе, находящейся в ОП. Основными исходными данными для проектирования являются следующие параметры СП (36 вариантов):

- Тип архитектуры (система команд и программистская модель),
- Элементная база,
- разрядность процессора,
- параметры блока прерываний,
- параметры бока обращений к оперативной памяти

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/ п	Библиографическое описание	Место доступа
1	Хорошевский В.Г. Архитектура вычислитель-ных систем / Москва: МГТУ им. Н.Э. Баумана, 2008 520 с ISBN 978-5-7038-3175-5.	URL: https://ibooks.ru/bookshelf/364102/reading (дата обращения: 09.10.2022) Текст: электронный.
2	Варфоломеев В.А., Лецкий Э.К., Шамров М.И., Яковлев В.В. Высокопроизводительные е вычислительные системы на железнодорожном транспорте: учебник для студ. вузов жд. трансп. / - М.: ГОУ "Учебнометод. центр по образованию на ж.д.", 2010 246 с.: ил ISBN 978-5-9994-0013-0 (в пер.)	URL: http://195.245.205.171:8087/jirbis2/books/scanbooks_new/metod/1 0-2085.pdf. 500 экз Текст : непосредственный. (дата обращения: 09.10.2022)
3	Шамров М. И. ; Архитектура и	URL: http://195.245.205.171:8087/jirbis2/books/scanbooks_new/upos/D

C-1095.pdf. Текст: непосредственный(дата обращения: структурная организация 09.10.2022) микроконтроллеров семейства CORTEX-M: [Электронный ресурс]: учеб. пособие для студ. напр. "Информатика и вычислительная техника" и "Информационная безопасность" / МИИТ. Каф. "Вычислительные системы, сети и информационная безопасность". - М.: РУТ(МИИТ), 2019. - 62 Шамров М. И. URL: 4 http://195.245.205.171:8087/jirbis2/books/scanbooks_new/upos/D Программирование C-1373.pdf. Текст: непосредственный(дата обращения: микро-контроллеров 09.10.2022) семейства CORTEX-M: учеб. пособие для студ. напр. "Информатика и вычислительная техника" и "Информационная безопасность" /; МИИТ. Каф. "Вычислительные системы, сети и информационная безопасность". - М.: РУТ (МИИТ), 2020. - 88 с.

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- Электронно-библиотечная система Научно-технической библиотеки РУТ (МИИТ): http://library.miit.ru
- Национальный открытый университет «ИНТУИТ» https://intuit.ru/studies/courses/2192/31/info
- Форум специалистов по информационным технологиям http://citforum.ru/

- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - Microsoft Windows
 - Microsoft Office
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Лекционная аудитория, оснащенная компьютером и проектором.

В случае проведения дистанционных занятий необходимо наличие средств для организации удаленных коммуникаций.

Для проведения лабораторных занятий требуется специализированная лаборатория, оснащенная учебно-лабораторными стендами, подключенными к сети электропитания со средствами аварийного отключения в соответствии с нормами электробезопасности.

Для проведения лабораторных занятий в лаборатории необходимо наличие мультимедиа аппаратуры. Для доступа к электронным учебнометодическим указаниям и литературе по курсу должен быть предусмотрен компьютер с открытым доступом для студентов.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

Курсовой проект в 6 семестре.

Экзамен в 6 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Вычислительные системы, сети и информационная безопасность»

М.И. Шамров

Согласовано:

Заведующий кафедрой ВССиИБ

Б.В. Желенков

Председатель учебно-методической

комиссии

Н.А. Андриянова