министерство транспорта российской федерации федеральное государственное автономное образовательное учреждение высшего образования «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Кафедра «Экономика транспортной инфраструктуры и управление

строительным бизнесом»

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Основы математического моделирования»

Направление подготовки:	2.9.2 – Железнодорожный путь, изыскание и
	проектирование железных дорог
Направленность:	
Квалификация выпускника:	
Форма обучения:	очная
Год начала подготовки	2024

1. Цели освоения учебной дисциплины

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Основы математического моделирования" относится к блоку 1 "Дисциплины (модули) аспирантов" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

4. Общая трудоемкость дисциплины составляет

2 зачетные единицы (72 ак. ч.).

5. Образовательные технологии

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

Тема 1

основные этапы математического моделирования

Тема 2

Типы решаемых задач

Рассматриваемые вопросы:

- классификация математических моделей;
- модели линейные или нелинейные, сосредоточенные или распределенные; модели детерминированные или стохастические, статические или динамические; модели дискретные или непрерывные, гипотетические модели, мысленный эксперимент; - универсальность моделей.

Тема 3

Простейшие математические модели

Рассматриваемые вопросы:

- модель Лотки-Вольтерра;
- модель войны или сражения (модель Ланкастера);
- принципы построения математических моделей: на основе фундаментальных законов природы, из вариационных принципов, по аналогии, иерархический подход, принцип суперпозиции;
- общая схема принципа Гамильтона;
- понятие натурного, математического и вычислительного эксперимента, их взаимосвязь

Тема 4

Вычислительные алгоритмы

Рассматриваемые вопросы:

- основные понятия теории приближенных вычислений и численных методов;
- методы приближения функций;
- аппроксимация, интерполирование и экстраполирование;
- основные методы решения нелинейных и дифференциальных уравнений.

Тема 5

Математическое моделирование систем

Рассматриваемые вопросы:

- понятие системы;
- принципы исследования сложных систем;
- представление сложных объектов в виде систем;
- элементы систем и виды связей между ними. Свойства сложных систем.