МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности

23.05.01 Наземные транспортно-технологические средства,

утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Основы математического моделирования

Специальность: 23.05.01 Наземные транспортно-

технологические средства

Специализация: Подъемно-транспортные, строительные,

дорожные средства и оборудование

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- формирование умения находить адекватную замену любого процесса соответствующей математической моделью;
- исследование математических моделей методами вычислительной математики с привлечением средств современной вычислительной техники.

Задачами дисциплины (модуля) являются:

- овладение знаниями о методах составления математических моделей;
- овладение знаниями об исследовании математических моделей на ЭВМ с помощью прикладных программ.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-2** Способен решать профессиональные задачи с использованием методов, способов и средств получения, хранения и переработки информации; использовать информационные и цифровые технологии в профессиональной деятельности;
- **ПК-2** Способен проводить теоретические и экспериментальные научные исследования по поиску и проверке новых идей совершенствования средств механизации и автоматизации подъёмно-транспортных, строительных и дорожных работ.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- методы математического моделирования, применяемые в области расчета и исследования средств механизации и автоматизации подъёмнотранспортных, строительных и дорожных работ;
 - методику составления математических моделей.

Уметь:

- разрабатывать математические модели и оценивать их адекватность и точность;
- применять методы математического моделирования и готовые математические модели для решения прикладных задач;
- использовать информационные технологии при исследовании математических моделей.

Владеть:

- навыками разработки математических моделей процессов и явлений средств механизации и автоматизации подъёмно-транспортных, строительных и дорожных работ;
- навыками разработки новых или использования существующих методов решения получающихся математических задач;
- навыками разработки алгоритмов решения и их программной реализации;
- навыками решения задач с использованием современной вычислительной техники и анализа получающихся результатов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Сем	Семестр	
		№4	№5	
Контактная работа при проведении учебных занятий (всего):	128	64	64	
В том числе:				
Занятия лекционного типа	48	32	16	
Занятия семинарского типа	80	32	48	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 88 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных

условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No		
п/п	Тематика лекционных занятий / краткое содержание	
1	Общие положения моделирования.	
	Рассматриваемые вопросы:	
	- моделирование как метод научного познания;	
	- основные понятия и определения;	
	- область применения математических моделей.	
2	Адекватность и эффективность моделей.	
	Рассматриваемые вопросы:	
	- адекватность модели;	
	- процесс построения модели;	
	- теория подобия;	
	- факторы, влияющие на адекватность модели.	
3	Моделирование и подобие в научно-технических исследованиях.	
	Рассматриваемые вопросы:	
	- роль и место моделирования в современном мире;	
	- аналоговое и математическое моделирование;	
	- применение моделирования в обучении и исследованиях.	
4	Классификация моделей.	
	Рассматриваемые вопросы:	
	- классификация моделей;	
	- физические модели;	
	- абстрактные модели.	
5	Основные этапы математического моделирования.	
	Рассматриваемые вопросы:	
	- основные понятия математического моделирования;	
	- использование прикладных программ для создания моделей;	
	- этапы математического моделирования.	
6	Общие подходы к построению математических моделей.	
	Рассматриваемые вопросы:	
	- классификация математических моделей;	
7	- методы решения задач моделирования.	
'	Разновидности задач моделирования.	
	Рассматриваемые вопросы:	
	- прямые и обратные задачи моделирования и примеры;	
	- детерминированные и стохастические задачи и примеры этих задач; - линейные и нелинейные задачи.	
8		
0	Методы математического программирования.	
	Рассматриваемые вопросы:	
	- классификация методов математического программирования; - области применения различных методов математического программирования.	
9	Линейное программирование.	
)		
	Рассматриваемые вопросы:	

Ma			
No	Тематика лекционных занятий / краткое содержание		
п/п			
	- основные понятия линейного программирования;		
	- примеры решения задач линейного программирования.		
10	Нелинейное программирование.		
	Рассматриваемые вопросы:		
	- виды нелинейных моделей;		
	- математическое описание нелинейных моделей;		
	- примеры решения задач нелинейного программирования.		
11	Математические модели в виде дифференциальных уравнений.		
	Рассматриваемые вопросы:		
	- математическое описание модели в виде дифференцияльных уравнений;		
	- способы исследования модели в виде дифференциальных уравнений;		
	- пример решения для одномассовой механической системы;		
	- модели, заданные в виде уравнений в частных производных.		
12	Стохастические модели.		
	Рассматриваемые вопросы:		
	- основные понятия теории вероятности;		
	- примеры стохастических моделей;		
	- обработка опытных данных.		
13	Теория графов.		
	Рассматриваемые вопросы:		
	- основные понятия теории графов;		
	- области использования моделей в виде графов;		
	- пример модели в виде графа.		
14	Искусственный интеллект. Искусственные нейронные сети.		
	Рассматриваемые вопросы:		
	- история возникновения и развитие;		
	- распознование изображений;		
	- порождающие системы;		
	- искусственные нейронные сети;		
	- области применения искусственного интеллекта.		
15	Физическое моделирование.		
	Рассматриваемые вопросы:		
	- основные понятия физического моделирования;		
	- теория подобия.		
16	Основные задачи динамики механических систем и способы их решения.		
	Рассматриваемые вопросы:		
	- общие сведения о динамике механических систем (МС);		
	- классификация МС;		
	- основные задачи динамики МС.		
	- способы решения основных задач динамики МС.		
17	Построение расчетных схем механических систем и общие принципы их расчета.		
	Рассматриваемые вопросы:		
	- обозначения на эквивалентных схемах МС;		
	- основные законы динамики;		
	- классификация сил;		
	- принцип Даламбера;		
	- уравненения Лагранжа.		
18	Приведенные массы, моменты инерции, силы и моменты сил МС, приведенные		
	жесткости на примере механических систем грузоподъемных машин.		
	Рассматриваемые вопросы:		
	<u> </u>		

No	T		
п/п	Тематика лекционных занятий / краткое содержание		
	- правила нахождения приведенных сил и моментов сил;		
	- привила нахождения приведенных масс и моментов инерции;		
	- приведение жесткостей;		
	- приведенные массы, моменты инерции, силы и моменты сил МС, приведенные жесткости на		
	примере механических систем грузоподъемных машин.		
19	Уравнения движения жёстких механических систем.		
	Рассматриваемые вопросы:		
	- составления уравнений жестких МС;		
	- пример составления уравнений движения для жесткой МС.		
20	Уравнения движения упругих механических систем.		
	Рассматриваемые вопросы:		
	- составления уравнений упругих МС;		
	- примеры составления уравнений движения для упругих одномассовых и многомассовых МС.		
21	Динамические процессы ненагруженных механизмов, при нагружении и после		
	разгона.		
	Рассматриваемые вопросы:		
	- уравнения движения для ненагруженных механизмов;		
	- составление уравнений движения при нагружении механизмов.		
22	Основы расчета динамики механических систем машин с присоединенной массой и с		
	гибкими звеньями.		
	Рассматриваемые вопросы:		
	- особенности динамики машин с гибкими звеньями.		
	- пример составления уравнений движения для конвейера.		
23	Динамические расчеты МС с пневматическими и гидравлическими связями.		
	Рассматриваемые вопросы:		
	- структура и основные элементы пневматических и гидравлических приводов;		
	- особенности составления уравнений динамики для механических систем с пневматическими		
	связями;		
	- особенности составления уравнений динамики для механических систем с гидравлическими связями.		
24	Динамические расчеты МС с электрическими связями.		
	Рассматриваемые вопросы:		
	- структура электрических приводов;		
	- составление уравнений динамики для электрических приводов.		

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Этапы математического моделирования на примере моделирования движения
	кривошипно-шатунного механизма.
	В результате выполнения лабораторной работы студенты составляют математическую модель кривошипно-шатунного механизма и исследуют ее на ЭВМ.
	Точные и численные методы решения математических задач и их использование при моделировании. В результате выполнения лабораторной работы рассматриваются различные методы решения задач с помощью программы MathCAD.
3	Прямые и обратные задачи моделирования.

Mo	
№ п/п	Наименование лабораторных работ / краткое содержание
	В результате выполнения лабораторной работы рассматривается применение ЭВМ для решения прямых и обратных задач моделирования.
4	Линейное программирование. Транспортная задача.
	В результате выполнения лабораторной работы студенты решеют линейную задачу оптимизации с
	помощью встроенных функций Excel и графически, сравнивают результаты решения.
5	Нелинейное программирование.
	В результате выполнения лабораторной работы студенты решеют нелинейную задачу оптимизации с помощью Excel.
6	Вероятностные модели. Статистические характеристики.
	В результате выполнения лабораторной работы студенты находят статистические характеристики вероятностной модели.
7	Аппроксимация функций.
	В результате выполнения лабораторной работы для набора данных находят аппроксимирующие
	функции различных видов.
8	Модель одномассовой механической системы.
	В результате выполнения лабораторной работы студенты составляют модель механической системы в
	виде дифференциальных уравнений и решают уравнения аналитически.
9	Искусственные нейронные сети.
	В результате выполнения лабораторной работы рассматриваются способы построения нейронных
	сетей.
10	Составление программы вычисления функции в MathCAD.
	В результате выполнения лабораторной работы студенты составляют программу в среде MathCAD.
11	Составление программы построения графиков в различных системах координат.
	В результате выполнения лабораторной работы студенты составляют программу для построения
	различных типов графиков.
12	Описание системы дифференциальных уравнений в виде матрицы в MathCAD.
	В результате выполнения лабораторной работы рассматриваются правила составления программы для
	решения дифференциальных уравнений.
13	Моделирование процессов в одномассовой системе.
	В результате выполнения лабораторной работы математическая модель для одномассовой
	механической системы исследуется в среде MathCAD.
14	Математическое моделирование процессов в двухмассовой механической системе.
	В результате выполнения лабораторной работы составляется модель для двухмассовой МС и
	исследуется в MathCAD.
15	Составление уравнений динамики для механической системы.
	В результате выполнения лабораторной работы составляется модель для заданной преподавателем МС
	и исследуется в MathCAD.
16	Математическое моделирование процессов в механической системе.
	В результате выполнения лабораторной работы составляется модель для заданной преподавателем МС
	и исследуется в MathCAD.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам.
2	Изучение дополнительной литературы.

3	Выполнение курсовой работы.
4	Выполнение расчетно-графической работы.
5	Подготовка к промежуточной аттестации.
6	Подготовка к текущему контролю.

4.4. Примерный перечень тем видов работ

- 1. Примерный перечень тем расчетно-графических работ
- 1. Создание математической модели мостового крана (одномассовая)
- 2. Создание математической модели мостового крана (двумассовая)
- 3. Создание математической модели крана-штабелера (одномассовая)
- 4. Создание математической модели крана-штабелера (двумассовая)
- 5. Создание математической модели стрелы автокрана (одномассовая)
- 6. Создание математической модели стрелы автокрана (двумассовая)
- 7. Создание математической модели стрелы башенного крана (одномассовая)
- 8. Создание математической модели стрелы башенного крана (двумассовая)
- 9. Создание математической модели стрелы манипулятора (одномассовая)
- 10. Создание математической модели стрелы манипулятора (двумассовая)
 - 2. Примерный перечень тем курсовых работ
 - 1. Моделирование плавности хода трактора.
 - 2. Моделирование плавности хода трехосного автомобиля.
 - 3. Моделирование плавности хода большегрузного автомобиля.
 - 4. Моделирование колебаний на сидении водителя трактора XT3.
 - 5. Моделирование питающей части пневматической системы трактора.
- 6. Моделирование питающей части пневматической системы большегрузного автомобиля.
- 7. Моделирование пневматической тормозной системы прицепного состава, выполненной по однопроводной схеме.
- 8. Моделирование пневматической тормозной системы прицепного состава, выполненной по двухпроводной схеме.

- 9. Моделирование пневматической тормозной системы трактора.
- 10. Моделирование пневматической тормозной системы большегрузного автомобиля.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Доев, В. С. Сборник заданий по теоретической механике на базе MATHCAD: учебное пособие для спо / В. С. Доев, Ф. А. Доронин. — Санкт-Петербург: Лань, 2021. — 588 с.	URL: https://e.lanbook.com/book/152468 (дата обращения: 07.03.2022) Текст: электронный.
2	Зализняк, В. Е. Введение в математическое моделирование: учебное пособие для вузов / В. Е. Зализняк, О. А. Золотов. — Москва: Издательство Юрайт, 2022. — 133с.	URL: https://urait.ru/bcode/488304 (дата обращения: 07.03.2022) Текст: электронный.
3	Язев, В. А. Численные методы в Mathcad : учебное пособие для вузов / В. А. Язев, И. Лукьяненко. — Санкт-Петербург : Лань, 2022. — 116 с.	URL: https://e.lanbook.com/book/179025 (дата обращения: 07.03.2022) Текст: электронный.
4	Моделирование систем и процессов: учебник для вузов / В. Н. Волкова [и др.]; под редакцией В. Н. Волковой, В. Н. Козлова. — Москва: Издательство Юрайт, 2022. — 450 с.	URL: https://urait.ru/bcode/489154 (дата обращения: 07.03.2022) Текст: электронный.
5	Охорзин, В. А. Прикладная математика в системе MATHCAD: учебное пособие / В. А. Охорзин. — 3-е изд., стер. — Санкт-Петербург : Лань, 2021. — 352 с.	URL: https://e.lanbook.com/book/167771 (дата обращения: 07.03.2022) Текст: электронный.
6	Советов, Б. Я. Моделирование систем: учебник для академического бакалавриата / Б. Я. Советов, С. А. Яковлев. — 7-е изд. — Москва: Издательство Юрайт, 2021. — 343 с.	URL: https://urait.ru/bcode/488217 (дата обращения: 07.03.2022) Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/),

«Гарант» (http://www.garant.ru/),

«Техэксперт» — справочная система, предоставляющая нормативнотехническую, нормативно-правовую информацию (https://docs.cntd.ru/)

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); MathCAD

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
 - 3. Для проведения тестирования: компьютерный класс.
 - 4. Компьютерный класс для проведения лабораторных занятий.
 - 9. Форма промежуточной аттестации:

Курсовая работа в 4 семестре.

Экзамен в 4 семестре.

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

Н.А. Зайцева

Согласовано:

Заведующий кафедрой НТТС

А.Н. Неклюдов

Председатель учебно-методической

комиссии С.В. Володин