МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Основы механики тягового подвижного состава

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 28.05.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Основы механики тягового подвижного состава» являются:

- изучение и понимание студентами требований, предъявляемых к динамике и прочности подвижного состава (п.с.), которые являются основой его проектирования и эксплуатации;
- изучение динамических явлений, возникающих в рельсовом пути и п.с.
 при его движении по рельсовому пути, а также явлений, возникающие при взаимодействии подвижного состава с окружающей средой;
- изучение динамических явлений для правильного выбора схемы и параметров оборудования подвижного состава И, В частности, виброзащитных устройств (рессорное подвешивание, горизонтальные, продольные и поперечные связи колесных пар с рамой тележки и тележки с кузовом, подвешивание тягового двигателя, тягового редуктора и т. п.), а также для снижения динамических сил, действующих на несущие элементы механической части и на железнодорожный путь, на электрическое и пневматическое оборудование подвижного состава и находящихся в нём людей;
- освоить как расчетные методы, так и современные методы проведения динамических и прочностных испытаний.

Задачами освоения учебной дисциплины «Основы механики тягового подвижного состава» являются:

- освоение знаний о целях изучения динамических явлений, вызываемых неровностями, всегда имеющимися на железнодорожном пути и бандажах колесных пар и проявляющими себя при движении подвижного состава по пути, понимания, что динамические явления не являются необходимыми для выполнения основной функции подвижного состава: обеспечения перевозочного процесса;
- освоение форм проявления динамических явлений в эксплуатации, их негативного влияния на прочность и функционирование механической и электрической части п.с., методов исследования и средств ограничения динамических явлений в эксплуатации;
- освоение студентами методов исследования свободных и вынужденных горизонтальных и вертикальных колебаний сложных моделей ПС;
- освоение студентами в зависимости от наличия элементов рессорного подвешивания и модели железнодорожного пути с линейными или нелинейными характеристиками выбрать из изученных ими необходимый метод исследования свободных и вынужденных колебаний;

- освоение студентами методов исследования прочности и надежности несущих конструкций ПС;
- освоение навыков самостоятельной работы с научно-технической литературой по динамике и прочности ПС.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-9** Имеет навык выполнять обоснование параметров конструкции конструкций и систем подвижного состава высокоскоростного наземного транспорта;
- **ПК-10** Способен применять расчетные и экспериментальные методы при создании новых образцов техники.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные динамические характеристики системы «подвижной состав — путь», методы исследования колебаний и устойчивости движения подвижного состава

Уметь:

- исследовать динамику элементов подвижного состава и оценивать динамические качества и безопасность подвижного состава

Владеть:

- методами оценки динамических сил в элементах подвижного состава, методами моделирования динамики и прочности

Знать:

- методы оценки нагруженности элементов подвижного состава, , основные принципы расчета прочности элементов подвижного состава, расчетные схемы основных деталей и узлов подвижного состава, методы их математического моделирования

Уметь:

- использовать информацию о новых и перспективных конструкциях тягового подвижного состава, выбирать из изученных методов необходимый метод исследования характеристик подвижного состава

Владеть:

- навыками применения типовых расчетных методов обоснования параметров тягового подвижного состава, методами оценки напряженного и деформированного состояния элементов подвижного состава
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество часов		
Тип учебных занятий	Всего	Семестр		
		№6	№7	
Контактная работа при проведении учебных занятий (всего):		64	64	
В том числе:				
Занятия лекционного типа	64	32	32	
Занятия семинарского типа	64	32	32	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 88 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

<u>№</u>					
п/п	Тематика лекционных занятий / краткое содержание				
1	Способы оценки прочности и несущих деталей механической части подвижного				
1	состава.				
	Способы оценки надежности несущих деталей механической части подвижного состава.				
2	Основы расчета деталей механической части подвижного состава на прочность.				
	Способы определения напряжений в элементах конструкций по заданным нагрузкам.				
3					
3	Расчет статически неопределимых систем. Способы оценки прочности несущих деталей подвижного состава.				
4					
4	Характеристики усталостной прочности и способы ее повышения.				
	Запас усталостной прочности и способы его оценки при детерминированных режимах нагружения.				
5	Физические основы процесса разрушения металлов.				
	Вероятностный характер их прочностных свойств металлов.				
6	Расчеты на усталостную прочность при случайных режимах нагружения.				
	Деление несущих деталей подвижного состава на группы (I и II) в зависимости от последствий их				
	ОТКАЗА.				
7	Характеристики эксплуатационной нагруженности несущих деталей подвижного				
	состава и учет их при расчетах усталостной прочности.				
	Современные методы проведения динамических и прочностных испытаний и аппаратура,				
	применяемая при этом.				
8	Виды отказов несущих деталей подвижного состава.				
	Прогнозирование надежности отказов несущих деталей подвижного состава.				
9	Величина пробега до появления усталостных трещин.				
	Снижение коэффициента запаса усталостной прочности ниже допустимой величины.				
10	Виды колебаний и возмущений.				
	Свободные и вынужденные колебания; возмущения, вызывающие колебания э.п.с.				
11	Особенности уравнений боковых колебаний.				
	Кинематическое описание процесса качения колесной пары без проскальзывания: вывод уравнений				
	извилистого движение колесной пары, собственная частота и период колебаний, собственная				
	пространственная частота, закон колебаний относа и виляния колесной пары, длина волны относа и				
12	Виляния.				
12	Качение колесной пары с проскальзыванием колес по рельсам.				
	Скорости проскальзывания колес по рельсам; теория Ф.Картера; относительные продольные и				
13	поперечные скорости проскальзывания (крипы); спин.				
13	Динамическое описание процесса качения колесной пары.				
	Расчет нормальных реакций тележки; расчет нормальных реакций рельсов; поперечные и продольные реакции рельсов; определение гравитационной жесткости и гравитационной силы; определение				
	гравитационного момента и угловой гравитационной жесткости; уравнения, описывающие извилистое				
	движение колесной пары с учетом действующих на нее сил.				
14	Силы крипа.				
* '	Возникновение контактных напряжений в колесе и пятно контакта; условие Мизеса; определение сил				
	крипа исходя из решения контактной задачи Ф. Картером; расчет максимального и минимального				
	значений коэффициента крипа; теория взаимодействия колеса и рельса Дж. Калкера; определение				
	коэффициентов продольного и поперечного крипа, коэффициента спина и коэффициент крипа,				
	характеризующего взаимное влияние спина и поперечного крипа; расчет эффективной конусности				
	профиля бандажа криволинейного очертания; расчет коэффициента увеличения скорости поперечного				
	скольжения точки контакта за счет боковой качки колесной пары; корректировка суммарной силы				
	крипа по нелинейной теории К.Л. Джонсона; суммарный крип; зависимость коэффициента сцепления				
	от суммарной относительной скорости проскальзывания колеса.				
15	Уравнения извилистого движения колесной пары и проверка устойчивости.				

No	
п/п	Тематика лекционных занятий / краткое содержание
11/11	Дифференциальные уравнения извилистого движения колесной пары с псевдоскольжением (крипом) и сравнение их с системой уравнений, описывающих свободные вертикальные колебания двухмассовой системы; неустойчивое извилистое движение одиночной колесной пары; критическая скорость
1.0	движения; соотношение критической и конструкционной скоростей движения.
16	Особенности боковых колебаний локомотивов.
	Набегание гребня бандажа на рельс; учет неровности пути в плане; учет поперечных реакции буксовых связей и момента от продольных реакций; определение боковой силы с учетом возможного набегания гребня бандажа на рельс; определение момента активных сил, вызывающих виляние тележки; учет опрокидывающего момента в уравнении боковой качки кузова; определение жесткости пружин рессорного подвешивания с учетом запаса от опрокидывания кузова.
17	Выбор модели пути.
	Абсолютно жесткий путь; безынерционный неравноупругий путь; дискретный упруго-вязкий путь; континуальная модель пути; частотная характеристика прогиба пути при действии единичной гармонической силы; расчет вещественной и мнимой составляющих частотной характеристики прогиба пути; функция спектральной плотности возмущения.
18	Случайные колебания.
	Постановка задачи; понятие о случайном процессе и его характеристиках; реализация случайного процесса; математическое ожидание; дисперсия; автокорреляционная и взаимная корреляционные функции и их нормирование; понятие о стационарном процессе; эргодический стационарный процесс.
19	Свойства корреляционных функций.
	Типовые графики и выражения автокорреляционной и взаимной корреляционной функций; корреляционная функция гармонического сигнала со случайной фазой.
20	Спектральная плотность случайных процессов.
	Определение спектральной плотности случайных процессов; свойства спектральной плотности; односторонняя и двусторонняя спектральные плотности; «белый шум»; графики корреляционных
21	функций и спектральных плотностей, построенные при различных значениях степени затухания. Взаимная спектральная плотность.
21	Определение взаимной спектральной плотности; вещественная (синфазная), мнимая (квадратурная), амплитудная и фазовая составляющая взаимной спектральной плотности; функция когерентности; моменты и характеристики спектральной плотности; расчет эффективной частоты случайного процесса; расчет коэффициента широкополосности случайного процесса; определение ширины функции спектральной плотности.
22	Понятия о максимумах (минимумах) случайного процесса.
	Абсолютный и локальные максимумы (минимумы); законы распределения абсолютных максимумов; определение среднего значения абсолютного максимума по формуле Крамера.
23	Определение реакции линейной динамической системы на случайное возмущение. Задание вектора возмущений; определение комплексного случайного спектра выходных процессов; установиление связи между спектральными плотностями входа и выхода; решение задачи идентификации динамической системы.
24	Показатели качества механической части э.п.с.
	Понятие о качестве, показатели качества; разделение показателей качества на 11 основных групп; общие для механической части и локомотива в целом показатели качества.
25	Специфические для механической части показатели качества. Показатели динамических качеств (ПДК): показатели виброзащиты тягового подвижного состава; показатели безопасности движения; плавность хода.
26	Способы выбора схем и параметров рессорного подвешивания рельсовых экипажей. Влияние параметров рессорного подвешивания на показатели качества; многокритериальная оптимизация параметров рессорного подвешивания; расчет целевой функции в виде функции суммарных допустимых потерь, описывающая условия компромисса.

№ п/п	Тематика лекционных занятий / краткое содержание			
27	Оптимизация параметров рессорного подвешивания по минимуму интенсивности			
	выбросов показателей качества за допустимую область			
	Расчет целевой функции в виде суммарной интенсивности выбросов случайного процесса за			
	допустимую область; примеры решения задач оптимизации.			

4.2. Занятия семинарского типа.

Лабораторные работы

	этаоораторные расоты
№ п/п	Наименование лабораторных работ / краткое содержание
1	Исследование горизонтальных колебаний и устойчивости движения одиночной колесной пары без учета набегания гребней бандажей на внутреннюю поверхность головок рельсов – анализ конструкции исследуемого экипажа и определение параметров одиночной колесной пары; – разработка механо-математической модели горизонтальных колебаний одиночной колесной пары без учета набегания гребней бандажей на внутреннюю поверхность головок рельсов; – составление дифференциальных уравнений горизонтальных колебаний одиночной колесной пары; – анализ полученных результатов расчетов по исследованию устойчивости движения одиночной колесной пары.
2	Исследование горизонтальных колебаний и устойчивости движения одиночной колесной пары с учетом набегания гребней бандажей на внутреннюю поверхность головок рельсов. – разработка механо-математической модели одиночной колесной пары с учетом набегания гребней бандажей на внутреннюю поверхность головок рельсов; – составление дифференциальных уравнений горизонтальных колебаний одиночной колесной пары; – анализ полученных результатов расчетов по исследованию устойчивости движения одиночной колесной пары с учетом набегания гребней бандажей на внутреннюю поверхность головок рельсов.
3	Исследование горизонтальных колебаний и устойчивости движения одиночной тележки подвижного состава без учета ее связей с кузовом. – анализ конструкции исследуемого экипажа и определение параметров одиночной тележки; – разработка механо-математической модели горизонтальных колебаний одиночной тележки без учета ее связей с кузовом; – составление дифференциальных уравнений горизонтальных колебаний одиночной тележки; – анализ полученных результатов расчетов; определение критической скорости движения одиночной тележки без учета ее связей с кузовом.
5	Исследование горизонтальных колебаний и устойчивости движения одиночной тележки подвижного состава с учетом ее связей с кузовом. — разработка механо-математической модели горизонтальных колебаний одиночной тележки с учетом ее связей с кузовом; — составление дифференциальных уравнений горизонтальных колебаний одиночной тележки; — анализ полученных результатов расчетов; определение критической скорости движения одиночной тележки с учетом ее связей с кузовом. Определение геометрических параметров рамы тележки. — анализ конструкции тележки исследуемого экипажа соответствии с заданием и рабочими чертежами тележки; — определение основных размеров рамы тележки.

№	Наименование лабораторных работ / краткое содержание				
Π/Π	паименование лаобраторных работ / краткое содержание				
6	Расчет вертикальных статических сил, действующих на раму тележки				
	– расчет масс элементов конструкции тележки; определение полной массы тележки;				
	– расчет массы кузова исходя из заданной нагрузки на ось и рассчитанной полной масы тележки;				
	 составление весовой ведомости. 				
7	Разработка схемы сил, действующих на раму тележки.				
	– разработка схемы нагружения рамы тележки;				
	– расчет действующий на раму тележки вертикальных сил в соответствии с ее конструкцией и классом				
	тягового привода.				
8	Подготовка к расчету рамы тележки на прочность при действии вертикальной				
	статической нагрузки.				
	– определение моментов инерции поперечных сечений балок рамы тележки;				
	 построение грузовой и единичных эпюр изгибающих и крутящих моментов; 				
	– определение коэффициентов и свободных членов системы уравнений метода сил;				
	 проверка правильности нахождения коэффициентов системы уравнений метода сил. 				
9	Расчет рамы тележки на прочность при действии вертикальной статической				
	нагрузки.				
	– определение неизвестных метода сил путем решения системы уравнений;				
	 перестройка эпюр от единичных воздействий; 				
	 построение суммарной эпюры изгибающих и крутящих моментов. 				
10	Анализ результатов расчета рамы тележки на прочность при действии вертикальной				
	статической нагрузки.				
	– анализ суммарных эпюр изгибающих и крутящих моментов; определение опасных сечений;				
	– расчет нормальных, касательных и эквивалентных напряжений в опасных сечениях; сравнение с				
	допускаемыми значениями.				

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание					
-						
1	Постановка целей и задач курса практических занятий.					
	Рассматриваемые вопросы:					
	- разработка механо-математических моделей тягового подвижного состава (ТПС).					
2	Общие понятия о колебаниях.					
	Рассматриваемые вопросы:					
	- общие понятия о колебаниях движущегося ТПС;					
	- принципы составления кинематических схем					
3	Упругие и диссипативные элементы рессорного подвешивания ТПС.					
	Рассматриваемые вопросы:					
	- расчет упругих и диссипативных сил элементов рессорного подвешивания.					
4	Разработка механо-математической модели одноосного экипажа с двумя степенямыи					
	свободы.					
	Рассматриваемые вопросы:					
	- разработка механо-математической модели одноосного экипажа с двумя степенями свободы;					
	- составление уравнений вертикальных колебаний.					
5	Механо-математическая модель плоского двухосного экипажа					
	Рассматриваемые вопросы:					
	- разработка механо-математической модели плоского двухосного экипажа;					
	- составление уравнений вертикальных колебаний.					
6	Пространственная механо-математическая модель экипажа					
	Рассматриваемые вопросы:					

№ п/п	Тематика практических занятий/краткое содержание				
	- разработка пространственной механо-математической модели экипажа для исследования				
	горизонтальных колебаний;				
	- составление уравнений горизонтальных колебаний.				
7	Сложные механо-математические модели				
	Рассматриваемые вопросы:				
	- разработка сложных механо-математических моделей ТПС для исследования вынужденных				
	вертикальных колебаний.				
8	Сложные механо-математические модели ТПС				
	Рассматриваемые вопросы:				
	- разработка сложных механо-математических моделей ТПС для исследования вынужденных				
	горизонтальных колебаний				

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Работа с лекционным материалом, с литературой, самостоятельное изучение разделов тем.
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

Выбор параметров рессорного подвешивания подвижного состава».

Работа предусматривает выполнение следующих этапов:

- 4.4.1. Разработка кинематической схемы подвижного состава заданного типа и заданной осевой формулы для вертикальных колебаний.
- 4.4.2. Составление в соответствии с заданием уравнений вертикальных колебаний заданной модели.
- 4.4.3. Определение исходных параметров рессорного подвешивания заданной модели.
- 4.4.4. Оптимизация параметров рессорного подвешивания подвижного состава.
- 4.4.5. Расчеты случайных вертикальных колебаний моделей подвижного состава.
- 4.4.6. Амплитудный (спектральный) анализ обобщенных координат, описывающих свободные и вынужденные колебания.
- 4.4.7. Анализ графиков амплитудных и фазовых частотных характеристик, а также спектральных плотностей возмущений и обобщенных координат, описывающих вынужденные вертикальные случайные колебания

заданного типа подвижного состава с исходными и оптимальными параметрами рессорного подвешивания.

- 4.4.8. Анализ графиков зависимостей от скорости движения величин ПДК подвижного состава при вертикальных колебаниях и определение максимально допустимой скорости движения.
 - 4.4.9. Выводы.
 - 4.4.10. Список используемой литературы.

Варианты заданий

1)

- 1. Вид колебаний: горизонтальные
- 2. Тип подвижного состава: электровоз
- 3. Осевая формула: 3o 3o
- 4. Класс тягового привода: II
- 5. Конструкционная скорость: 175 км/ч

2)

- 1. Вид колебаний: вертикальные
- 2. Тип подвижного состава: электропоезд
- 3. Осевая формула: 20 20
- 4. Класс тягового привода: II
- 5. Конструкционная скорость: 125 км/ч

3)

- 1. Вид колебаний: горизонтальные
- 2. Тип подвижного состава: электровоз
- 3. Осевая формула: 20 20
- 4. Класс тягового привода: II
- 5. Конструкционная скорость: 140 км/ч

4)

- 1. Вид колебаний: вертикальные
- 2. Тип подвижного состава: вагон метро
- 3. Осевая формула: 20 20
- 4. Класс тягового привода: II

- 5. Конструкционная скорость: 95 км/ч
- 5)
- 1. Вид колебаний: горизонтальные
- 2. Тип подвижного состава: электровоз
- 3. Осевая формула: 3o 3o
- 4. Класс тягового привода: І
- 5. Конструкционная скорость: 80 км/ч
- 6)
- 1. Вид колебаний: вертикальные
- 2. Тип подвижного состава: вагон метро
- 3. Осевая формула: 20 20
- 4. Класс тягового привода: II
- 5. Конструкционная скорость: 125 км/ч
- 7)
- 1. Вид колебаний: вертикальные
- 2. Тип подвижного состава: вагон метро
- 3. Осевая формула: 2o 2o
- 4. Класс тягового привода: ІІ
- 5. Конструкционная скорость: 125 км/ч
- 8)
- 1. Вид колебаний: вертикальные
- 2. Тип подвижного состава: электровоз
- 3. Осевая формула: 20 20 20
- 4. Класс тягового привода: ІІ
- 5. Конструкционная скорость: 235 км/ч
- 9)
- 1. Вид колебаний: горизонтальные
- 2. Тип подвижного состава: электропоезд
- 3. Осевая формула: 20 20
- 4. Класс тягового привода: II
- 5. Конструкционная скорость: 180 км/ч

10)

1. Вид колебаний: вертикальные

2. Тип подвижного состава: электровоз

3. Осевая формула: 20 – 20

4. Класс тягового привода: II

5. Конструкционная скорость: 165 км/ч

6)

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	оении дисциплины (модуля).	
№ п/п	Библиографическое описание	Место доступа
1	Механическая часть тягового подвижного состава И.В. Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред. И.В. Бирюкова Однотомное издание Транспорт, 1992	НТБ (уч.3); НТБ (уч.6); НТБ (фб.)
2	Методические указания для выполнения курсового проекта и курсовой работы по дисциплине "Динамика электроподвижного состава" С.Д. Крушев, А.Н. Савоськин, Е.В. Сердобинцев; МИИТ. Каф. "Электрическая тяга" Однотомное издание МИИТ, 2004	НТБ (уч.3); НТБ (фб.); НТБ (чз.2)
3	Конспект лекций по дисц. "Динамика электроподвижного состава" (Глава 3. Случайные колебания) А.Н. Савоськин, Л.В. Винник, А.И. Поляков, Е.В. Сердобинцев; Ред. А.Н. Савоськин; МИИТ. Каф. "Электрическая тяга" Однотомное издание МИИТ, 2002	НТБ (уч.3); НТБ (фб.); НТБ (чз.2)
4	Механическая часть тягового подвижного состава И.В. Бирюков; А.Н. Савоськин; Г.П. Бурчак; Под ред. И.В. Бирюкова Однотомное издание Транспорт, 1992	https://ru.z- library.sk/book/3077461/4b7c5c/
5	Краткий курс теоретической механики С.М. Тарг. Высш. шк., 1986	https://ru.z- library.sk/book/450279/ff2f9e/Краткий- курс-теоретической-механики.html
1	Прочность и безотказность подвижного состава железных дорог А.Н. Савоськин, Г.П. Бурчак, А.П. Матвеевичев и др.; Под общ. ред. А.Н. Савоськина Однотомное издание	НТБ (уч.6); НТБ (фб.)

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ – научно-техническая библиотека РУТ (МИИТ).

http://www.elibrary.ru/ — Информационный портал Научная электронная библиотека.

http://window.edu.ru – единая коллекция цифровых образовательных ресурсов

http://rzd.ru/ - сайт ОАО «РЖД».

Поисковые системы: Yandex, Rambler, Mail

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Система автоматизированного проектирования Компас.

Специализированная программа MathCAD

Специализированная программа MATLAB

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения лабораторных занятий необходим компьютерный класс со специализированным программным обеспечением и подключением к сетям INTERNET

9. Форма промежуточной аттестации:

Зачет в 6 семестре.

Курсовая работа в 7 семестре.

Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Электропоезда и локомотивы» А.П. Васильев доцент, доцент, к.н. кафедры П.С. Григорьев «Электропоезда и локомотивы» Н.И. Долгачев профессор, профессор, к.н. кафедры «Электропоезда и локомотивы» Е.К. Рыбников профессор, профессор, д.н. кафедры «Электропоезда и локомотивы» А.Н. Савоськин Согласовано: Заведующий кафедрой ЭиЛ О.Е. Пудовиков Председатель учебно-методической С.В. Володин комиссии