МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной РУТ (МИИТ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Основы мехатроники и робототехники

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Автоматизация и роботизация

технологических процессов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: И.о. заведующего кафедрой Григорьев Павел

Александрович

Дата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- получение теоретических и практических знаний в области построения робототехнических и мехатронных систем;
- ознакомление студентов с современными концепциями построения и применения мехатронных и робототехнических систем;
- получение теоретических и практических знаний при описании мехатронных модулей движения, на примере механизмов промышленных роботов;
- изучение проблем управления мехатронными модулями и их системами.

Задачами дисциплины (модуля) являются:

- получение студентами знаний и умений для квалифицированного выбора структуры данных и алгоритмов для обработки знаний;
- умение отладить программу на языках программирования ИИ, сопровождение и документирование кода (в том числе написание тестов в рамках концепции тест-ориентированного программирования), разработка интерфейса;
- владение и применение знаний по основам структурного программирования, теории алгоритмов, дискретной математики, численным методам и системному анализу.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-1 - Способен осуществлять разработку конструкторской документации на специализированное оборудование мехатронных и робототехнических систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- области применения мехатронных и робототехнических систем;
- возможности программных комплексов по моделированию и исследованию транспортных мехатронных систем.

Уметь:

- выбирать необходимые типы робототехнических и мехатронных

систем;

- применять приёмы и методы компьютерного имитационного моделирования для анализа и проектирования транспортных мехатронных систем.

Владеть:

- способностью оценивать мехатронные и робототехнические системы на пригодность решения конкретной задачи.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
тип учесных занятии		Семестр №5
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No				
п/п	Тематика лекционных занятий / краткое содержание			
1	Области применения роботов и решаемые задачи.			
	Рассматриваемые вопросы:			
	- место робототехники и мехатроники в других дисциплинах;			
	- предмет робототехники;			
	- функциональная схема робота;			
	- термин «робот».			
2	T T T			
	Рассматриваемые вопросы:			
	- основные виды классификации роботов;			
	- классификация по назначению;			
	- классификация роботов по способу управления;			
	- классификация по быстродействию.			
3	Промышленные роботы.			
	Рассматриваемые вопросы:			
	- понятие «промышленный робот» ;			
	- применение робототехники в промышленности;			
4	- классификация промышленных роботизированных комплексов.			
4	Роботы непромышленного назначения.			
	Рассматриваемые вопросы:			
	- применение роботов непромышленного назначения;			
	- примеры использования средств робототехники в немашиностроительных и непромышленных отраслях хозяйства.			
5	Конструкции роботов.			
3				
	Рассматриваемые вопросы: - степени подвижности роботов;			
	- системы координат;			
	- рабочая зона роботов;			
	- захватные устройства.			
6	Приводы.			
	Рассматриваемые вопросы:			
	- требования к приводам роботов;			
	- типы приводов, используемых в роботах;			
	- бионическое направление в робототехнике.			
7	Информационно-сенсорные системы.			
	Рассматриваемые вопросы:			
	- определение информационно-сенсорных систем;			
	- классификация информационно-сенсорных систем.			
8	Способы и системы управления.			
	Рассматриваемые вопросы:			
	- понятие система управления роботом;			
	- виды систем управления и устройств управления;			
	- задачи управления;			
	- способы управления.			
9	Робототехнические комплексы.			
	Рассматриваемые вопросы:			
	- сборочные робототехнические комплексы;			
	- сварочные робототехнические комплексы;			

№ п/п	Тематика лекционных занятий / краткое содержание
	- роботизированные технологические комплексы.

4.2. Занятия семинарского типа.

Практические занятия

	практические занятия			
№ п/п	Тематика практических занятий/краткое содержание			
1	Классификация роботов и робототехнических систем.			
	В ходе выполнения практического задания изучаются различные классификаторы роботов и			
	робототехнических систем.			
2	Промышленные роботы.			
	В результате выполнения практического задания изучается контрукция и основные характиеристики промышленных роботов.			
3				
	В результате выполнения практического задания изучается контрукция и основные характиеристики			
	непромышленных роботов.			
4	Структура и принципы интеграции робототехнических систем.			
	В результате выполнения практического задания изучаются принципы интеграции робототехнических			
	систем.			
5	Конструкции роботов.			
	В результате выполнения практического задания изучается степени подвижности робота, системы			
	координат и захватные устройства.			
6	Приводы роботов.			
	В результате выполнения практического задания изучаются классификация и назначение приводов			
	роботов.			
7	Моторы-редукторы.			
	В результате выполнения практического задания изучаются классификация и назначение мотор-			
	редуторов.			
8	Мехатронные модули линейного движения.			
	В результате выполнения практического задания изучаются типы и премущества модулей на базе ЛВМД.			
9	Интеллектуальные мехатронные модули движения.			
	Интеллектуальные мехатронные модули движения. Интеллектуальные мехатронные модули			
	движения.			
10	Интеллектуальные мехатронные модули движения.			
	В результате выполнения практического задания изучаются классификация ИММД и задачи			
1.1	управления.			
11	Устройства роботов.			
	В результате выполнения практического задания изучается классификация рабочих органов			
10	манипуляторов.			
12	Устройства роботов.			
	В результате выполнения практического задания изучается классификация сенсорных систем манипуляторов.			
13	Системы управления роботами.			
13	В результате выполнения практического задания изучаются классификация и назначение систем			
	управления роботов.			
14	Системы управления исполнительного уровня.			
	J J J J J			

№ п/п	Тематика практических занятий/краткое содержание		
	В результате выполнения практического задания изучаются нечеткие регуляторы исполнительного		
	уровня.		
15	Системы управления тактического уровня.		
	В результате выполнения практического задания изучаются системы контруного силового управления		
	и способы программирования траекторий роботов.		
16	Интеллектуальные системы управления на основе нейронных сетей.		
	В результате выполнения практического задания изучается применение нейронных сетей для		
	управления мехатронными системами.		

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к практическим занятиям.
2	Изучение дополнительной литературы.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых проектов Курсовые проекты (работы) учебным планом не предусмотрены.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	А. Ю. Гибкие производственные системы: учебное пособие / А. Ю. Выжигин. : Издательство "Машиностроение", 2023 288 с ISBN 978-5-907523-21-0	URL:https://e.lanbook.com/book/307310 (дата обращения: 16.03.2023) Текст: электронный.
2	Подураев Ю. В. Мехатроника: основы, методы, применение: учебное пособие для студентов вузов / Ю.В. Подураев Москва: Машиностроение, 2007 256 с ISBN 5-217-03355-X.	URL: https://e.lanbook.com/book/806 (дата обращения: 07.03.2023) Текст: электронный.
3	Титенок, А. В. Основы робототехники: учебное пособие / А. В. Титенок. — Вологда: Инфра-Инженерия, 2022. — 236 с. — ISBN 978-5-9729-0872-1.	URL: https://e.lanbook.com/book/281237 (дата обращения: 21.04.2023) Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/)

«Гарант» (http://www.garant.ru/)

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, PowerPoint).

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET.
- 2. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 3. Специализированная лекционная аудитория с мультимедиа аппаратурой.
 - 9. Форма промежуточной аттестации:

Зачет в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

А.В. Мишин

заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

А.Н. Неклюдов

Согласовано:

и.о. заведующего кафедрой НТТС

П.А. Григорьев

Председатель учебно-методической

комиссии С.В. Володин