МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Основы определения термодинамических потерь и математическое моделирование тепло- и массо- обмена при проектировании энергооборудования

Направление подготовки: 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль): Промышленная теплоэнергетика

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 377843

Подписал: заведующий кафедрой Дмитренко Артур

Владимирович

Дата: 30.03.2023

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины (модуля) «Основы определения термодинамических потерь и математическое моделирование тепло- и массообмена при проектировании энергооборудования» с профилем «Промышленная теплоэнергетика» является формирование компетенций, позволяющих подготовить будущих бакалавров к проведению работ по рациональному использованию энергетических ресурсов в энергетике, промышленности, ж.д. транспорте и объектах ЖКХ.

Основные задачи: приобретение навыков в оценке и анализе неравновесных термодинамических циклов и расчете их кпд, приобретение навыков математического моделирования - численного интегрирование и составление разностных схем задач тепло и массообмена.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен демонстрировать применение основных способов получения, преобразования, транспорта и использования теплоты в теплотехнических установках и системах;
- **ПК-1** Готовность участвовать в сборе и анализе исходных данных для проектирования элементов оборудования и объектов деятельности в целом с использованием нормативной документации и современных методов поиска и обработки информации;
- **ПК-2** Способность проводить расчеты по типовым методикам и проектировать отдельные детали и узлы с использованием стандартных средств автоматизации проектирования в соответствии с техническим заданием.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

основные источники научно-технической информации в области энергосбережения; методы сбора и анализа исходных данных для оценки потенциала энергосбережения различных объектов деятельности с использованием нормативной документации и современных методов поиска и обработки информации, методы управления производством, передачи и потребления энергии, методики проведения технико-экономического

обоснования проектных разработок энергообъектов и их элементов.

Уметь:

воспринимать, использовать, обобщать, анализировать научнотехническую и справочную информацию в области энергосбережения, ставить цели и выбирать пути их достижения; проводить технико-экономическое обоснование проектных разработок энергообъектов и их элементов по стандартным методикам.

Владеть:

навыками оценки потенциала энергосбережения энергообъекта, обработки информации проектирования методами поиска И ДЛЯ энергообъектов элементов cприменением современных ИХ информационных технологий; навыками проведения предварительного технико-экономическое обоснования проектных решений.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

		Количество	
Тип учебных занятий	часов		
	Всего	Сем.	
BCCI		№5	
Контактная работа при проведении учебных занятий (всего):	80	80	
В том числе:			
Занятия лекционного типа	48	48	
Занятия семинарского типа	32	32	

3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 64 академических часа (ов).

- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

Mo			
№	Тематика лекционных занятий / краткое содержание		
п/п			
1	Введение в теорию погрешности		
	Рассматриваемые вопросы:		
	источники погрешности результата:		
	1) математическая модель,		
	2) исходные данные,		
	3) приближенный метод,		
	4) округления при вычислениях.		
2	Численные методы решения скалярных уравнений		
	Рассматриваемые вопросы:		
	Основами вычислительных методов: 1) решение систем линейных уравнений; 2) интерполирование и		
	приближённое вычисление функций; 2) численное интегрирование; 3) численное решение системы		
	нелинейных уравнений; 4) численное решение обыкновенных дифференциальных уравнений; 5)		
	численное решение уравнений в частных производных (уравнений математической физики); 6)		
	решение задач оптимизации.		
3	JP.		
	Рассматриваемые вопросы:		
	1) метод Гаусса,		
	2) метод Крамера,		
	3) итерационные методы		
4	Интерполяция функций		
	Рассматриваемые вопросы:		
	Понятие интерполирования функции:		
	интерполировании сложной аналитической функции		
	интерполировании функции заданной таблично		
	алгебраическая интерполяция		
	линейной интерполяции		
5	Среднеквадратичные приближения		
	Рассматриваемые вопросы:		
	1) систематические ошибки.		
	2) случайные ошибки.		
	3) грубые ошибки		
	4) метод наименьших квадратов (МНК)		
6	Численное интегрирование		
	Рассматриваемые вопросы:		

No			
Π/Π	Тематика пекционных занятий / клаткое солержание		
	1) метод прямоугольников		
	2) методе трапеций		
	3) метод Симпсона		
7	Численное дифференцирование		
	Рассматриваемые вопросы:		
	1) методы односторонней разности		
2) метод двусторонней разности			
	3) частное дифференцирование функции многих переменных		
8	Численные методы решения задачи Коши для обыкновенных дифференциальных		
	уравнений (ОДУ) 1 порядка		
	Рассматриваемые вопросы:		
	1) численные методы решения задачи Коши		
	2) метод Рунге-Кутта		
	3) метод Рунге-Кутта более высоких порядков точности		
9	Методы решения нелинейных уравнений. Решение краевых задач для ОДУ второго		
	порядка. Численные методы решения уравнений в частных производных		
	Рассматриваемые вопросы:		
	1)метод простой итерации,		
	2)метод хорд,		
	3) метод бисекции		
	4) метод конечных разностей		
10	Общие понятия термодинамики неравновесных процессов		
	Рассматриваемые вопросы:		
	1) равновесная термодинамическая система		
	2) неравновесная термодинамическая система		
11	Законы (Начала) термодинамики. Законы термодинамики многокомпонентных		
	систем.		
	Рассматриваемые вопросы:		
	1) уравнения 1,2 з-на термодинамики однокомпонентной среды		
	2) уравнения 1,2 з-на термодинамики многокомпонентной среды		
12	Основные понятия и законы.		
	Рассматриваемые вопросы:		
	1) характеристические функции		
	2) удельные термодинамические потенциалы		
	3) уравнения Гельмгольца и Гиббса-Гельмгольца		
	4) уравнение Гиббса-Дюгема		
13	Уравнение неразрывности.		
	Рассматриваемые вопросы:		
	1) интегро-дифференциальная запись закона сохранения массы		
	2) уравнение концентрации і-компонента системы		
	3) уравнение движения		
14	Уравнение энергии.		
	Рассматриваемые вопросы:		
	1) Общая формулировка закона сохранения, превращения энергии электромагнитной		
	многокомпонентной среды.		
	2) Интегро-дифференциальное и дифференциальное уравнения энергии, внутренней энергии и		
4 ~	энтальпии		
15	Эмпирические уравнения переноса.		
	Рассматриваемые вопросы:		

Mo			
№	Тематика лекционных занятий / краткое содержание		
п/п			
	1) вязкость		
	2) диффузия		
	3) первый и второй законы Фика		
16	Теплопроводность. Основные уравнения электромагнитного поля.		
	Рассматриваемые вопросы:		
	1) дифференциальное уравнение теплопроводности		
	2) перекрестные эффекты		
	3) термодиффузионный эффект Людвига и Соре		
17	Термохимия		
	Рассматриваемые вопросы:		
	1) вычисление химического потенциала		
	2) термодинамика процессов с химическими реакциями.		
	3) тепловой эффект химической реакции и законы М. В. Ломоносова, Г.И. Гесса Г. Кирхгоффа и И.		
	Шварца.		
18	Термохимия. Элементы теории и законы переноса излучения		
	Рассматриваемые вопросы:		
	1) скорость химической реакции		
	2) химическое сродство		
	3) закон Аррениуса		
	4) равновесные химические реакции		
	5) закон действующих масс и константы равновесия		
	6) законы Планка, Винна		
19	Дифференциальные уравнения баланса массы.		
	Рассматриваемые вопросы:		
	1) импульс и энергии для вязких электро- магнитнопродных и химически реагирующих систем		
	2) закон сохранения массы		
	3) уравнение для концентрации		
20	Уравнения движения диссипативной и идеальной среды.		
	Рассматриваемые вопросы:		
	1) уравнение движения энергии для линейных неравновесных систем		
	2) уравнение для внутренней энергии		
	3) уравнение для энтальпии		
	4) уравнение для энтальпии торможения		
	5) уравнение для поля давления. Частные случаи.		
	6) уравнения теплопроводности и поля давления.		
21	Феноменологические уравнения теории энтропии.		
	Рассматриваемые вопросы:		
	Общие положения и аспекты теории энтропии линейных неравновесных термодинамических систем.		
22	Элементы теории энтропии		
	Рассматриваемые вопросы:		
1) элементы теории устойчивости равновесного состояния термодинамической системы, 2) феноменологические уравнения 3) выражение производства энтропии через термодинамические потоки и силы			
			4) дифференциальное уравнение баланса для энтропии
		23	Принципы неравновесных систем.
	Рассматриваемые вопросы:		
1) принцип симметрии Кюри: пространственная изотропность системы			
	2) принцип локального термодинамического равновесия:соотношения взаимности Онсагера		
	(инвариантность относительно обращения времени).		
24	Эффекрты неравновесных систем.		
	1 ** * *		

№ п/п	Тематика лекционных занятий / краткое содержание			
	Рассматриваемые вопросы:			
	1) перекрестные эффекты			
	2) прямые и обратные термодиффузионные и термоэлектрические эффекты			
	3) прямые и обратные термодиффузионные эффекты4) прямые и обратные термоэлектрические эффекты Зеебека и Пельтье			
	5) применимость соотношения взаимностей в химических реакциях			
25	КПД Неравновесных процессов.			
	Рассматриваемые вопросы:			
	Закон Гюи-Стодолы			

4.2. Занятия семинарского типа.

Практические занятия

	практические запитии	
№ п/п	Тематика практических занятий/краткое содержание	
1	Теория погрешностей	
	В результате работы на практическом занятии студент получает на указанную тему: Теория	
	погрешностей -	
	источники погрешности результата: 1) математическая модель,	
	2) исходные данные,	
	3) приближенный метод,	
	4) округления при вычислениях.	
2	Решение нелинейных уравнений	
	В результате работы на практическом занятии студент получает навыки на указанную тему: Решение нелинейных уравнений	
3	Решение систем линейных алгебраических уравнений итерационными методами	
	В результате работы на практическом занятии студент преобретает навыки на указанную тему:	
	решение систем линейных алгебраических уравнений итерационными методами	
4		
	В результате работы на практическом занятии студент получает навыки на тему: численное	
	интегрирование	
5	Численное решение задача Коши для обыкновенных дифференциальных уравнений	
	порядка	
	В результате работы на практическом занятии студент получает навыки на тему: численное решение	
	задача Коши для обыкновенных дифференциальных уравнений 1 порядка	
6	Численные методы решения уравнений в частных производных	
	В результате работы на практическом занятии студент получает навыки на тему: численные методы	
	решения уравнений в частных производных	
7	Основные понятия и законы. Характеристические функции. Удельные	
	термодинамические потенциалы. Уравнения Гельмгольца и Гиббса-Гельмгольца.	
	Уравнение Гиббса-Дюгема	
	В результате работы на практическом занятии студент получает навыки на тему: Характеристические	
	функции. Удельные термодинамические потенциалы. Уравнения Гельмгольца и Гиббса-Гельмгольца.	
	Уравнение Гиббса-Дюгема	
8	Интегро-дифференциальная запись закона сохранения массы, уравнение	
	концентрации і-компонента системы, уравнение движения. Уравнение энергии	
	Общая формулировка закона сохранения, превращения энергии электромагнитной	

№	Тематика практических занятий/краткое содержание		
Π/Π	темитики прикти теских запитить криткое содержание		
	многокомпонентной среды. Интегродифференциальное и дифференциальное		
	уравнения. Простейшие системы уравнений и их решения.		
	В результате работы на практическом занятии студент получает навыки на тему: Интегро-		
	дифференциальная запись закона сохранения массы, уравнение концентрации і-компонента системы, уравнение движения. Уравнение энергии Общая формулировка закона сохранения, превращения энергии электромагнитной многокомпонентной среды. Интегродифференциальное и		
	дифференциальное уравнения. Простейшие системы уравнений и их решения.		
9	Решение задач по темам: Эмпирические уравнения переноса Вязкость Диффузия.		
	Первый и второй законы Фика. Первый закон. Фика Второй закон Фика.		
	Теплопроводность. Основные уравнения электромагнитного поля. Перекрестные		
	эффекты Термодиффузионный эффект Людвига и Соре		
	В результате работы на практическом занятии студент получает навыки на тему:		
	Решение задач по темам: Эмпирические уравнения переноса Вязкость Диффузия. Первый и второй		
	законы Фика. Первый закон. Фика Второй закон Фика. Теплопроводность. Основные уравнения		
	электромагнитного поля. Перекрестные эффекты Термодиффузионный эффект Людвига и Соре		
10	Вычисление химического потенциала и теплового эффекта химической. Скорость		
	химической реакции. Константа равновесия и излучения в дисситпативных сист		
	В результате работы на практическом занятии студент получает навыки на тему:		
	Вычисление химического потенциала и теплового эффекта химической. Скорость химической		
	реакции. Константа равновесия и излучения в дисситпативных системах		
11	Система уравнение для линейных неравновесных систем и ее простейшие решения		
	В результате работы на практическом занятии студент получает навыки на тему: -Система уравнение		
10	для линейных неравновесных систем и ее простейшие решения		
12	Расчет устойчивости равновесного состояния термодинамической системы Дж. У.		
	Гиббса Феноменологические уравнения. Расчет производства энтропии через		
	термодинамические потоки и силы. Дифференциальное уравнение баланса для		
	энтропии		
	В результате работы на практическом занятии студент получает навыки на тему: - Расчет		
	устойчивости равновесного состояния термодинамической системы Дж. У. Гиббса		
	Феноменологические уравнения. Расчет производства энтропии через термодинамические потоки и		
	силы. Дифференциальное уравнение баланса для энтропии		
13	Расчет коэффициент полезного действия диссипативных систем		
	В результате работы на практическом занятии студент получает навыки на тему: - Расчет		
	коэффициент полезного действия диссипативных систем		

4.3. Самостоятельная работа обучающихся.

N <u>o</u>	Вид самостоятельной работы	
п/п	, ,	
1	Подготовка к практическим занятиям	
2	Работа с лекционным материалом, литературой	
3	Подготовка к зачету, к экзамену	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No		
п/п	Библиографическое описание	Место доступа
1	Основы тепломассообмена и гидродинамики в однофазных и двухфазных средах. Критериальные, интегральные, статистические и прямые численные методы моделирования: монография / А. В. Дмитренко Москва: ЛАТМЭС, 2008 395 с.: ил., табл.; 21 см.; ил., табл.; 21 см.; ISBN 978-5-93271-404-1	Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru)
2	Введение в феноменологическую неравновесную термодинамику. Дмитренко А.В. Москва: Галлея-Принт, 2007. – 178 с. ISBN 978-5-93271-375-4	Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru)
3	Теория эквивалентных мер и множеств с повторяющимися, счетными фрактальными элементами. Стохастическая термодинамика и турбулентность. Коррелятор детерминированность — случайность. Дмитренко А.В. Москва: Галлея-Принт, 2013 226с: ил., табл.; 21 см.; ил., табл.; 21 см.; ISBN 978-5-9904322-1-5	Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru)
4	Стохастическая гидродинамика и теплообмен. Турбулентность и корредяционная размерность аттрактора. Теория эквивалентных мер и множеств с повторяющимися, счетными фрактальными элементами. Коррелятор "детерминированность-случайность" Дмитренко А.В. Москва: Галлея-принт, 2018, 228 с: ил., табл.; 21 см.; ил., табл.; 21 см.; ISBN 978-5-9904322-2-2	Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru)
5	Вычислительные методы Амосов А.А, Дубинский Ю.А., Копченова Н.В. М: Издательский дом МЭИ,2008 112c. ISBN: 5-06-000625-5	Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru)
6	Указания к решению задач по вычислительной математике. Теория погрешностей. Нелинейные уравнения. Системы линейных алгебраических уравнений. Казенкин К.О. М: Издательство МЭИ, 2009 32c.	Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru)

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Информационный портал Научная электронная библиотека eLIBRARY.RU (http://www.elibrary.ru);Единая коллекция цифровых образовательных ресурсов (http://www.window.edu.ru);Научно-техническая библиотека РУТ (МИИТ) (http://www.library.miit.ru).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Программы Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Мультимедийные комплексы, персональные компьютеры в специализированных аудиториях.

9. Форма промежуточной аттестации:

Экзамен в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, профессор, д.н. кафедры «Теплоэнергетика транспорта» Института транспортной техники и систем управления

А.В. Дмитренко

Согласовано:

Заведующий кафедрой ТТ

А.В. Дмитренко

Председатель учебно-методической

комиссии С.В. Володин