МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 10.04.01 Информационная безопасность, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Отказоустойчивые компьютерные архитектуры

Направление подготовки: 10.04.01 Информационная безопасность

Направленность (профиль): Безопасность компьютерных систем и сетей

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 4196

Подписал: заведующий кафедрой Желенков Борис

Владимирович

Дата: 12.11.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины является:

- изучение студентами теории и практики основ построения отечественных микропроцессоров и вычислительных комплексов с архитектурой «Эльбрус», разработки отказоустойчивых компьютерных архитектур на базе технологии безопасных вычислений.

Задачами дисциплины являются:

- формирование навыков анализировать архитектуру построения отечественных микропроцессоров с архитектурой «Эльбрус» и вычислительных комплексах на их основе, а также направления развития архитектуры средств вычислительной техники и информационных технологий;
- овладение основными методами разработки эффективных программ для микропроцессоров с архитектурой «Эльбрус» на языках C/C++

с использованием режима безопасных вычислений;

- овладение основными методами управления вычислительным процессом при параллельной обработке данных.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-4** Способен осуществлять сбор, обработку и анализ научнотехнической информации по теме исследования, разрабатывать планы и программы проведения научных исследований и технических разработок;
- **ПК-1** Способность проводить обоснование состава, характеристик и функциональных возможностей систем и средств обеспечения информационной безопасности объектов защиты на основе российских и международных стандартов.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- принципы построения и функционирования вычислительных комплексов с архитекурой «Эльбрус» и вычислительных систем на их основе, основные подходы к разработке отказоустойчивых компьютерных архитектур;

- основные методы разработки эффективных программ для микропроцессоров с архитектурой «Эльбрус» на языках C/C++ с использованием режима безопасных вычислений.

Уметь:

- осуществлять сбор и проводить анализ исходных данных для разработки программ высокопроизводительных вычислений, а также применять основные способы управления вычислительным процессом при параллельной обработке данных с использованием языков программирования C/C++ в режиме безопасных вычислений;
- применять основные методы портирования и оптимизации исходного кода программ под архитектуру «Эльбрус», разработанных на языках программирования C/C++ с использованием режима безопасных вычислений.

Владеть:

- навыками установки общего и прикладного программного обеспечения вычислительных комплексов серии «Эльбрус», разработки программного обеспечения для решения прикладных задач на языках программирования С/С++ с использованием режима безопасных вычислений в соответствии с техническим заданием, а также разработки документации с учетом требований стандартизации;
- навыками анализа научно-технической информации, отечественного и зарубежного опыта по тематике направлений разработки отказоустойчивых компьютерных архитектур, информационных технологий на их основе,
- а также составления отчета по выполненному заданию, участия во внедрении результатов исследований и разработок.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 6 з.е. (216 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №2
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		

Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 152 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\underline{0}}$	Тематика лекционных занятий / краткое содержание	
п/п		
1	Определение компьютерной архитектуры. Обзор современных компьютерных	
	архитектур. Основные тенденции в развитии технологий	
	Рассматриваются вопросы:	
	- определение компьютерной архитектуры, включающей три аспекта проектирования компьютеров:	
	архитектуру системы команд, организацию, т.е. микроархитектуру, и аппаратуру;	
	- обзор современных компьютерных архитектур и основных тенденций в развитии технологий;	
	- понятие аппаратно-программная платформа (АПП), объединяющее в себе архитектуру	
	микропроцессора, программу начального старта, операционную систему и компилятор.	
2	Основные характеристики компьютерной архитектуры: Производительность,	
	Системная надежность, Стоимость. Анализ факторов, влияющих на эффективности	
	применения компьютерной архитектуры Рассматриваются вопросы:	
	- основные характеристики компьютерной архитектуры: Производительность, Системная	
	надежность, Стоимость;	
	- приводится взаимосвязь производительности и надежности;	
	- характеристики программы, как время компиляции программы, размер файла исполняемого кода,	
	время выполнения программы, функциональная безопасность.	
3	Микропроцессоры с архитектурой Эльбрус и вычислительные комплексы	
	Рассматриваются вопросы:	
	- принципы построения и функционирования микропроцессоров с архитектурой Эльбрус, основных	
	характеристики вычислительных комплексов на их основе, общее программное обеспечение	
	«Эльбрус»;	
	- средства разработки и отладки программ	

№	Тематика лекционных занятий / краткое содержание		
п/п	темитика лекционных запитии / краткое содержание		
4	Микропроцессоры с архитектурой Эльбрус и вычислительные комплексы		
	(продолжение)		
	Рассматриваются вопросы:		
	- основные источники параллелизма;		
	- принципы оптимизации исходного текста программы компилятором;		
	- способы получения эффективного исполняемого кода для архитектуры «Эльбрус» с		
	использованием:		
	1) опций компилятора;		
	2) оптимизации исходного кода;		
	2) специализированной библиотеки математических функций EML;		
5	- анализ производиельности программ		
)	Сравнительный анализ технологий безопасного использования памяти с учетом		
	аппаратно-программных особенностей вычислительных комплексов		
	Рассматриваются вопросы:		
	- сравнительный анализ технологий обеспечения защиты от атак, использующих нарушение		
	целостного состояния памяти, на аппаратном уровне при помощи тегирования памяти		
6	Технология безопасных вычислений		
	Рассматриваются вопросы:		
	- основные принципы безопасного исполнения программ в системах на базе микропроцессоров с		
	архитектурой «Эльбрус». Архитектурная поддержка типизации данных;		
7	- модель угроз программ на языке С		
/	Технология безопасных вычислений (продолжение)		
	Рассматриваются вопросы:		
	- решения некоторых угроз языка С в защищенном режиме; - примеры программ с уязвимостями и результаты их выполнение в обычном и защищенном		
	- примеры программ с уязвимостями и результаты их выполнение в обычном и защищенном режимах:		
	режимах: 1) обращение к несуществующему элементу массива;		
	2) использование указателей после неправильных арифметических операций над ними;		
	3) использование неинициализированных значений переменных;		
	4) использование зависших указателей после освобождения памяти;		
	5) утечки памяти;		
	6) использование неправильных типов и/или неверного количества переменных в вызовах функций		
	с переменным числом аргументов.		
8	Основы разработки (портирования) программ на языке С для использования в		
	режиме безопасных вычислений		
	Рассматриваются основные способы разработки (портирования) программ на		
	языке С для исполнения на архитектуре Эльбрус в режиме безопасных вычислений.		
9	Основы разработки (портирования) программ на языке С для использования в		
	режиме безопасных вычислений (продолжение)		
	Рассматриваются основные способы отладки программ на		
	языке С для исполнения на архитектуре Эльбрус в режиме безопасных вычислений		
10	Подходы к разработке серверной части системы клиент-серверной архитектуры с		
	функционально-безопасным ядром программного обеспечения на базе платформы		
	«Эльбрус»		
	Рассматриваются вопросы:		
	- определение функциональной безопасности		
	- анализ угроз функциональной безопасности		
	- требования к фукнциональной безопасности в соответствии с ГОСТ Р ИСО/МЭК 15408 (ч. 1-3),		
<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

No			
п/п	Тематика лекционных занятий / краткое содержание		
11/11	ΓΟCT P 58412—2019, ΓΟCT P 56939—2024, ΓΟCT P 58412—2019, ISO 26262 / IEC 61508		
	(международные отраслевые источники)		
11	Подходы к разработке серверной части системы клиент-серверной архитектуры с		
	функционально-безопасным ядром программного обеспечения на базе платформ		
	«Эльбрус» (продолжение)		
	Рассматриваются вопросы:		
	- анализ архитектурных особенностей платформы «Эльбрус» для реализации функционально- безопасного программного обеспечения;		
	- подходы к построению серверного программного обеспечения с учетом особенности платформы;		
12	Подходы к разработке серверной части системы клиент-серверной архитектуры с		
12	функционально-безопасным ядром программного обеспечения на базе платформы		
	«Эльбрус» (продолжение)		
	Рассматриваются вопросы:		
	- подходы к тестированию программного обеспечения;		
13	- оценка функциональной безопасности		
13	Технология двоичной трансляции кода архитектуры х86(-64)		
	Рассматриваются вопросы:		
	- технология бинарной трансляции кода архитектуры x86(-64); - основы работы с бинарным транслятором уровня приложений.		
14	Выбор аппаратно-программной платформы для создания компьютерной		
11			
	архитектуры типа SMP, Claster, NUMA, ccNUMA		
	Рассматриваются вопросы: - Анализ конкретных требований и вычислительных задач;		
	- Анализ конкретных треоовании и вычислительных задач; - функциональные, технические, эксплуатационные характеристики вычислительных комплексов;		
	- функциональные, технические, эксплуатационные характеристики вычислительных комплекс - стек программного обеспечения, назначение, характеристики, способы применения.		
	- способы построения аппаратно-программной платформы (АПП), архитектура узла, топологии		
	связей объединения узлов, модели и средства организации вычислительного процесса,		
	виртуализация, программная экосистема, включая резервирование, монитор состояния параметров		
	функционирования		
15	Выбор аппаратно-программной платформы для создания компьютерной		
	архитектуры типа SMP, Claster, NUMA, ccNUMA (продолжение)		
	Рассматриваются вопросы:		
	- способы построения технологии и особенности функционирования отказоустойчивых		
	компьютерных архитектур,		
	- архитектура узла, топологии связей объединения узлов, модели и средства организации		
	вычислительного процесса, виртуализация, программная экосистема, повышение		
1.0	отказоустойчивости		
16	Методы испытаний вычислительных комплексов и систем		
	Рассматриваются вопросы:		
	- методы испытаний вычислительных комплексов и систем на соответствие функциональным,		
	техническим, эксплуатационным требованиям и требованиям информационной и функциональной безопасности		
	DUSUNAUTOUT N		

4.2. Занятия семинарского типа.

Лабораторные работы

No			
п/п	Наименование лабораторных работ / краткое содержание		
1	Управление динамической памятью вычислительного процесса		
•	В результате выполнения работы студент получает навыки создания программ на языках		
	программирования C/C++ при помощи средств разработки, входящих в состав ОС Debian, и		
	применения отладчика gdb для исследования стека исполняемых процессов программ.		
2	Оценка производительности микропроцессора «Эльбрус-4С», «Эльбрус-8С» и		
	вычислительных комплексов «Эльбрус-401PC», «Эльбрус-801PC» «Эльбрус-804»		
	В результате выполнения работы студент получает навыки оценки производительности		
	микропроцессоров «Эльбрус»		
3	Модель угроз программ на языке С. Защищенный режим		
	В результате выполнения работы студент получает навыки разработки, отладки и запуска сценариев		
	(программ) на языке С/С++, в обычном режиме и защищенном		
4	Основы разработки (портирования) программ на языке С/С++ для использования в		
	режиме безопасных вычислений		
	В результате выполнения работы студент получает навыки разработки (портирования) программ на		
	языке С/С++ для исполнения на архитектуре Эльбрус в режиме безопасных вычислений.		
5	Основы разработки программного обеспечения клиент-серверной архитектуры с		
	функционально-безопасным ядром на базе платформы «Эльбрус»		
	В результате выполнения работы студент получает навыки разработки программного обеспечения		
	клиент-серверной архитектуры с функционально-безопасным ядром на базе платформы «Эльбрус»		
	с использованием режима безопасных вычислений		
6	Основы работы с бинарным транслятором уровня приложений операционной		
	системы «Эльбрус». Разработка программы на языке С и анализ ее работы в		
	окружении бинарного транслятора		
	В результате выполнения работы студент получает навыки разработки, отладки и запуска програм		
	на языке C/C++ в режиме бинарной трансляции кодов архитектуры Intel x86 на отечественной		
	архитектуре e2k. Развить у обучающихся желание к повышению уровня профессиональных знаний		
	в области методов и способов эксплуатации алгоритмического обеспечения отечественных вычислительных комплексов «Эльбрус»		
7	вычислительных комплексов «эльорус» Анализ времени выполнения программ. Профилирование кода и поиск		
,			
	критических участков исполняемого кода программы В результате выполнения работы студент получает навыки поиска и анализа критических участков		
	исполняемого кода программы с целью их последующей оптимизации, обеспечивающей		
	сокращение времени выполнения программы в целом		
8	Разработка эффективных программ для отечественной архитектуры «Эльбрус»,		
	включающих в свой состав большое число циклов, рекурсий и специальных		
	арифметических операций, а также с использованием высокопроизводительной		
	математической библиотеки ЕМL		
	В результате выполнения работы студент получает навыки разработки эффективных программ для		
	отечественной архитектуры «Эльбрус Линукс», а также общие архитектурно независимые		
	рекомендации по написанию эффективных программ, включающих в свой состав большое число		
	циклов, рекурсий и специальных арифметических операций, а также использование		
	высокопроизводительной математической библиотеки EML		
9	Параллельное программирование на OpenMP		
	В результате выполнения работы студент получает навыки по созданию параллельной		
	многопоточной программы умножения больших матриц на языке С/С++ при помощи технологии		
	автоматического распараллеливания OpenMP в ОС семейства Linux (ОС Debian, ОС «Эльбрус		
	Линукс»)		

№	Наименование лабораторных работ / краткое содержание	
Π/Π	паименование лаоораторных расот / краткое содержание	
10	Параллельное программирование с использованием библиотеки libC (syscall: fork(),	
	clone())	
	В результате выполнения работы студент получает навыки по параллельному программированию с использованием библиотеки libC	
11	Многопоточные приложения в ОС Debian	
	В результате выполнения работы студент получает навыки работе с интерфейсной библиотекой	
	API-функций Pthreads и написанием программы на языке C++ с использованием библиотеки	
	libpthread, позволяющую запускать в многопоточном режиме процедуру произведения матриц.	
12	Организация распределенных вычислений с использованием библиотеки mpich2 в	
	OC семейства Linux (OC Debian, OC «Эльбрус Линукс»)	
	В результате выполнения работы студент получает навыки разработки программы на языке С/С++ с	
	использованием библиотеки mpich2, реализующей параллельную версию алгоритма сортировки	
	слиянием	
13	Организация распределенных вычислений с использованием параллельной	
	виртуальной машины PVM в ОС семейства Linux (ОС Debian)	
	В результате выполнения работы студент получает навыки использования библиотеки libpvm3,	
	реализующую параллельную версию алгоритма сортировки слиянием	
14	Организация распределенных вычислений с использованием технологии	
	виртуализации на основе KVM в ОС «Debian»	
	В результате выполнения работы студент получает навыки работы со средествами виртуализации	
	на основе KVM в ОС семейства Linux (ОС «Debian»)	
15	Создание и работа с контейнерами в ОС «Debian» и ОС «Эльбрус Линукс»	
	В результате выполнения работы студент получает навыки работы с контейнерами в ОС «Debian» и	
	ОС «Эльбрус Линукс».	
16	Создание менеджера ресурсов кластера с использованием программного	
	обеспечения Pacemaker	
	В результате выполнения работы студент получает навыки создания менеджера ресурсов кластера с	
	использованием программного обеспечения Pacemaker	

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
Π/Π		
1	Изучение основ отладки программ, разработанных на языках программирования	
	C/C++, с использованием gdb в среде операционной системы Debian версий 9, 10	
2	Подготовка к практическим занятиям	
3	Изучение учебной литературы из приведенных источников	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

$N_{\underline{0}}$	Библиографическое описание	Место доступа
Π/Π	внознографическое описание	тиссто доступа

1	Хеннесси Д.Л., Паттерсон Д.А. Компьютерная архитектура. Количественный подход. Издание 5-е. – М.: ТЕХНОСФЕРА, 2016- 936 с. : ил (Мир радиоэлектроники) Библиогр.: с. 839-868 1500 экз ISBN 978-5-94836- 413-1	Научно-техническая библиотека МИИТ (дата обращения 010.10.2025) полочный шифр004 X 38 Текст: непосредственный.10 экз.
2	Программирование на языке Си: практикум для студ. напр. 09.03.01 Информатика и вычислительная техника (Системы автоматизированного проектирования) / М. А. Гуркова, Э. Р. Резникова; МИИТ. Каф. Системы автоматизированного проектирования М.: РУТ (МИИТ), 2020 70 с Б. ц.	https://library.miit.ru/bookscatalog/metod/DC-1351.pdf (дата обращения: 22.10.2025)
3	Язык С++. Структуры данных и динамическое выделение памяти: метод. указ. к лаб. раб. по дисц. Алгоритмические языки и программирование для студ. напр. Информатика и вычислительная техника, Информационные системы и технологии / А.В. Варфоломеев; МИИТ. Каф. Автоматизированные системы управления М.: МИИТ, 2011 58 с Библиогр.: с. 58.	https://library.miit.ru/bookscatalog/metod/03-41524.pdf (дата обращения: 22.10.2025)

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- Разделы «Главное», «Наука и образование», «Публикации» на сайте «МЦСТ «Эльбрус». Российские микропроцессоры и вычислительные комплексы», http://www.mcst.ru
- Интернет-университет информационных технологий http://www.intuit.ru/
- Тематический форум по информационным технологиям http://habrahabr.ru/
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

- 1. Дистрибутив ОС «Эльбрус-Linux» в составе комплекта поставки ВК «Эльбрус-801РС», ВК «Эльбрус-804».
 - 2. Дистрибутив ОС Debian версии 9, 10.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебная аудитория (Компьютерный класс) для проведения учебных занятий (занятий лекционного типа, практических занятий):

- компьютер преподавателя, мультимедийное оборудование, рабочие станции студентов, доска.

Аудитория подключена к сети «Интернет».

9. Форма промежуточной аттестации:

Экзамен во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Вычислительные системы, сети и информационная безопасность»

Н.А. Шаменков

Согласовано:

Заведующий кафедрой ВССиИБ

Б.В. Желенков

Председатель учебно-методической

комиссии

Н.А. Андриянова