МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 23.04.02 Наземные транспортно-технологические комплексы, утвержденной директором РУТ (МИИТ) Покусаевым О.Н.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Перспективный подвижной состав ВСМ

Направление подготовки: 23.04.02 Наземные транспортно-

технологические комплексы

Направленность (профиль): Пассажирский комплекс железнодорожного

транспорта

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

D подписи: 20622

Подписал: руководитель образовательной программы

Копылова Екатерина Витальевна

Дата: 29.10.2025

1. Общие сведения о дисциплине (модуле).

Цели дисциплины «Перспективный подвижной состав ВСМ»

Формирование у студентов современных знаний о конструкции, принципах работы, технических и эксплуатационных характеристиках перспективного подвижного состава высокоскоростных магистралей (BCM).

Ознакомление с инновационными технологиями проектирования, производства и эксплуатации подвижного состава BCM, а также с тенденциями развития мирового и отечественного рынка высокоскоростных поездов.

Подготовка специалистов, способных анализировать, обосновывать и внедрять инженерные решения для повышения эффективности, безопасности, экологичности и энергоэффективности подвижного состава BCM.

Задачи дисциплины

Изучение типов, конструктивных особенностей и жизненного цикла подвижного состава для ВСМ, а также стратегий его развития.

Освоение методов проектирования, расчёта, выбора материалов и конструкторской документации для перспективных моделей высокоскоростных поездов.

Анализ технических, экономических и эксплуатационных показателей подвижного состава BCM, оценка его надежности, безопасности и энергоэффективности.

Ознакомление с современными стандартами, нормативами и требованиями к подвижному составу ВСМ в России и за рубежом.

Формирование навыков применения информационных технологий и цифровых инструментов в проектировании и эксплуатации подвижного состава.

Развитие компетенций по организации технического обслуживания, диагностики и модернизации подвижного состава ВСМ.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-5 - Способен использовать современные информационные и автоматизированные системы для повышения эффективности работы пассажирского комплекса в условиях развития ВСМ.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

Классификацию, конструктивные особенности и технические характеристики современных и перспективных типов подвижного состава для высокоскоростных магистралей.

Уметь:

Анализировать конструкцию, технические характеристики и эксплуатационные параметры современных и перспективных моделей подвижного состава для высокоскоростных магистралей.

Владеть:

Современными методами анализа, проектирования и инженерного расчёта конструкций и систем подвижного состава высокоскоростных магистралей, включая применение цифровых инструментов и программного обеспечения для моделирования и оптимизации.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

	Количество часов		
Тип учебных занятий	Всего	Семестр	
		№ 1	№2
Контактная работа при проведении учебных занятий (всего):	48	24	24
В том числе:			
Занятия лекционного типа	16	8	8
Занятия семинарского типа	32	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 96 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован

полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№	Тематика лекционных занятий / краткое содержание		
п/п			
1	Введение в перспективный подвижной состав ВСМ: классификация и тенденции		
	развития		
	На лекции рассматриваются основные типы и конструктивные особенности подвижного состава для		
	высокоскоростных магистралей, а также современные мировые тенденции развития		
	высокоскоростных поездов. Анализируются требования к скорости, безопасности,		
	энергоэффективности и комфорту, предъявляемые к перспективным моделям.		
2	Конструкция и основные системы высокоскоростных поездов		
	Изучаются устройство, принципы работы и взаимодействие ключевых систем подвижного состава		
	ВСМ: тягового оборудования, систем управления, энергоснабжения, тормозных и климатических		
	систем. Особое внимание уделяется инновационным техническим решениям, направленным на		
	повышение надежности и безопасности движения.		
3	Инновационные материалы и технологии в подвижном составе ВСМ		
	Лекция посвящена современным материалам и технологиям, используемым при проектировании и		
	производстве высокоскоростных поездов: легкие сплавы, композиты, аддитивные технологии.		
	Рассматриваются преимущества новых материалов для снижения массы, повышения прочности и		
4	энергоэффективности подвижного состава.		
4	Эксплуатация, техническое обслуживание и диагностика подвижного состава ВСМ		
	Рассматриваются организационные и технические аспекты эксплуатации высокоскоростных поездов,		
	методы диагностики состояния, планирования и проведения технического обслуживания и ремонта.		
	Обсуждаются современные цифровые инструменты и системы мониторинга для повышения		
_	эффективности эксплуатации.		
5	Безопасность и экологичность перспективного подвижного состава ВСМ		
	Лекция посвящена анализу факторов, влияющих на безопасность движения и экологическую		
	устойчивость высокоскоростных поездов. Изучаются системы обеспечения безопасности, требования		
	к экологичности, методы снижения шума, вибраций и выбросов.		
6	Цифровизация и автоматизация управления подвижным составом ВСМ		
	На лекции рассматриваются современные цифровые технологии, автоматизированные системы		
	управления движением и техническим состоянием поездов. Анализируются перспективы внедрения		
	искусственного интеллекта, IoT и Big Data для оптимизации работы и повышения эффективности эксплуатации подвижного состава BCM.		
	эксплуатации подвижного состава остуг.		

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание		
п/п			
1	Анализ конструкции и компоновки высокоскоростного поезда		
	Студенты изучат основные элементы и компоновочные схемы перспективного подвижного состава		
	ВСМ. В ходе занятия будет выполнено сравнение различных конструктивных решений и их влияние		
	на эксплуатационные характеристики.		
2	Исследование работы тягового оборудования и систем энергоснабжения		
	Практическая работа посвящена изучению принципов работы тяговых электродвигателей,		
	преобразователей энергии и систем питания высокоскоростных поездов. Студенты выполнят расчёты		
	и анализ работы оборудования в различных режимах движения.		
3	Диагностика и техническое обслуживание основных узлов подвижного состава		
	На занятии рассматриваются методы диагностики и профилактического обслуживания ключевых		
	агрегатов: тележек, колесных пар, тормозных систем. Студенты освоят базовые навыки оценки		
	технического состояния и выявления неисправностей.		
4	Применение инновационных материалов в конструкции поездов ВСМ		
	Студенты познакомятся с современными материалами (композиты, легкие сплавы), используемыми		
	для снижения массы и повышения энергоэффективности поездов. Будет выполнен анализ		
	преимуществ и ограничений новых материалов для различных элементов конструкции.		
5	Моделирование пассажирских потоков и эргономика салона поезда		
	Практическое занятие включает расчет и моделирование пассажиропотоков внутри состава, анализ		
	планировки салона, оценку комфорта и безопасности для пассажиров. Студенты предложат		
	собственные варианты оптимизации внутреннего пространства.		
6	Техническое обслуживание и ремонт цифровых и автоматизированных систем		
	управления		
	Студенты изучат принципы работы цифровых систем управления поездом, методы диагностики и		
	устранения неисправностей в электронных и автоматизированных комплексах. Будет проведена		
	работа с программным обеспечением для мониторинга состояния систем.		
7	Оценка энергоэффективности и экологичности подвижного состава ВСМ		
	Практическая работа направлена на анализ энергопотребления, выбросов и шума различных моделей		
	поездов. Студенты освоят методы расчета и сравнения экологических показателей, а также предложат		
	пути повышения энергоэффективности.		
8	Разработка проектных и конструкторских решений для перспективных поездов		
	В рамках занятия студенты выполнят проектирование отдельных элементов или систем		
	перспективного подвижного состава с использованием современных цифровых инструментов. Итогом		
	станет защита мини-проекта с обоснованием выбранных инженерных решений.		

4.3. Самостоятельная работа обучающихся.

№	Вид самостоятельной работы	
1	Изучение лекционного материала	
2	Подготовка к промежуточному контролю	
3	Подготовка к промежуточной аттестации.	

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа
---	----------------------------	---------------

п/п		
1	Галахов, А. Н. Моделирование технического	https://elibrary.ru/item.asp?id=55925308
	обслуживания и ремонта высокоскоростных	
	электропоездов с использованием данных	
	бортовых систем диагностики / А. Н. Галахов,	
	И. И. Лакин, Д. Д. Скворцов // Бюллетень	
	результатов научных исследований. – 2023. – №	
	4. – C. 52-67. – DOI 10.20295/2223-9987-2023-4-	
	52-67. – EDN SIDHWM. А. Н. Галахов, И. И.	
	Лакин, Д. Д. Скворцов 2023	
2	Высокоскоростные пассажирские	https://elibrary.ru/item.asp?id=46501979
	железнодорожные перевозки - приоритет	
	долгосрочного развития / М. М. Железнов, О. И.	
	Карасев, С. С. Тростьянский, Р. Г. Смирнов //	
	Мир транспорта. – 2021. – Т. 19, № 1(92). – С.	
	194-209. – DOI 10.30932/1992-3252-2021-19-1-	
	194-209. – EDN AKTJOY. M. М. Железнов, О.	
	И. Карасев, С. С. Тростьянский, Р. Г. Смирнов	
	2021	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ

http://rzd.ru/ - сайт ОАО «РЖД».

http://elibrary.ru/ - научно-электронная библиотека

Поисковые системы: YANDEX, GOOGLE, MAIL

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Для проведения занятий по дисциплине необходимо наличие ПО Microsoft Office

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Аудитория для проведения занятий по дисциплине должна быть оснащена доской, проектором, экраном и ПК или ноутбуком.

9. Форма промежуточной аттестации:

Зачет в 1 семестре. Экзамен во 2 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

руководитель образовательной программы

Е.В. Копылова

старший преподаватель кафедры «Управление транспортным бизнесом и интеллектуальные системы»

М.А. Туманов

Согласовано:

Руководитель образовательной

программы Е.В. Копылова

Председатель учебно-методической

комиссии Д.В. Паринов