МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Кафедра «Теоретическая механика»

Аннотированная программа подготовки к сдаче и сдачи государственного экзамена

Направление подготовки:	01.06.01 Математика и механика		
Направленность:	Теоретическая механика, динамика машин		
Квалификация	Исследователь. Преподаватель-исследователь		
выпускника:			
Форма обучения:	Очная		
Год начала обучения:	2021		

1. Общие положения

Государственная итоговая аттестация по направлению 01.06.01 «Математика и механика» направленности «Теоретическая механика» в соответствии с решением Ученого совета университета включает в себя:

- сдачу государственного экзамена для подтверждения готовности аспиранта к преподавательской деятельности;
- защиту Научного доклада об основных результатах подготовленной научноквалификационной работы (диссертации) для подтверждения готовности аспиранта к научно-исследовательской деятельности.

2. Перечень компетенций, сформированность которых проверяется при проведении государственного экзамена

№ п/п	Код компетенции	Содержание компетенции		
1	2	3		
1	ОПК-1	владением методологией научно-исследовательской деятельности		
		в области профессиональной деятельности;		
2	ОПК-5	способностью к использованию и внедрению результатов научно-		
		исследовательской деятельности в учебный процесс;		
3	ОПК-8	готовностью к преподавательской деятельности по основным		
		образовательным программам высшего образования;		
4	ПК-1	способностью исследовать устойчивость движения механических		
		систем;		
5	ПК-2	готовностью управлять движением механических систем;		
6	ПК-3	способность исследовать колебания механических систем;		
7	ПК-4	способностью осуществлять преподавательскую деятельность		
		высшего образования в соответствии с направленностью		
		программы;		
8	УК-1	способностью к критическому анализу и оценке современных		
		научных достижений, генерированию новых идей при решении		
		исследовательских и практических задач, в том числе в		
		междисциплинарных областях;		
9	УК-2	способностью проектировать и осуществлять комплексные		
		исследования, в том числе междисциплинарные, на основе		
		целостного системного научного мировоззрения с использованием		
		знаний в области истории и философии науки.		

3. Перечень основных учебных дисциплин (модулей) образовательной программы (или их разделов) и вопросов (заданий), выносимых для проверки на государственном экзамене

№ п/п	Наименование дисциплины	Перечень вопросов и заданий	Проверяемые компетенции
1	2	3	4
1	Перечень вопросов	Вторые вопросы билетов	ОПК-1, ОПК-5, ОПК-8,
	для подготовки к	1. Основные понятия и задачи	ПК-1, ПК-2, ПК-3, ПК-4,
	государственному	кинематики.	УК-1, УК-2
	итоговому	2. Кинематические характеристики	
	экзамену	движения точки.	
		3. Векторный способ задания движения	
		точки.	
		4. Координатный способ задания	

№ п/п	Наименование дисциплины	Перечень вопросов и заданий	Проверяемые компетенции
1	2	3	4
		движения точки.	
		5. Естественный способ задания	
		движения точки.	
		6. Векторный способ определения	
		скорости и ускорения точки.	
		7. Координатный способ определения	
		скорости и ускорения точки.	
		8. Естественный способ определения	
		скорости и ускорения точки.	
		9. Поступательное движение твердого	
		тела. Скорость и ускорение твердого	
		тела при его поступательном	
		движении.	
		10. Кинематические характеристики	
		движения твердого тела,	
		вращающегося вокруг неподвижной	
		ОСИ.	
		11. Скорость точки твердого тела,	
		вращающегося вокруг неподвижной	
		ОСИ.	
		12. Ускорение точки твердого тела,	
		вращающегося вокруг неподвижной	
		оси. 13. Преобразование вращательных	
		движений тел, вращающихся вокруг	
		неподвижных осей.	
		14. Сложное движение точки.	
		Основные понятия и определения.	
		15. Теорема сложения скоростей при	
		сложном движении точки.	
		16. Теорема сложения ускорений при	
		сложном движении точки.	
		17. Способы определения направления	
		ускорения Кориолиса при сложном	
		движении точки.	
		18. Плоскопараллельное движение	
		твердого тела. Основные понятия и	
		определения.	
		19. Скорость точки при	
		плоскопараллельном движении	
		твердого тела.	
		20. Теорема о проекциях скоростей	
		двух точек твердого тела.	
		21. Мгновенный центр скоростей при	
		плоскопараллельном движении	
		твердого тела.	
		22. Ускорение точки при	
		плоскопараллельном движении	
		твердого тела.	
		23. Мгновенный центр ускорений при	
		плоскопараллельном движении	
		твердого тела.	

№ п/п	Наименование дисциплины	Перечень вопросов и заданий	Проверяемые компетенции
1	2	3	4
		24. Сферическое движение твердого	
		тела. Углы Эйлера. Кинематические	
		уравнения движения. Мгновенная ось	
		вращения. Мгновенная угловая	
		скорость и мгновенное угловое	
		ускорение. Скорость и ускорение	
		точки твердого тела при его	
		сферическом движении.	
		25. Общий случай движения	
		свободного твердого тела. Разложение	
		его на поступательное и сферическое	
		движение. Мгновенная ось вращения.	
		Мгновенные угловая скорость и	
		угловое ускорение. Скорость и	
		ускорение точки свободного твердого	
		тела.	
		26. Формулы Эйлера для компонент	
		скорости точки при сферическом	
		движении тела.	
		27. Уравнения движения тела в общем	
		случае движения.	
		28. Теорема Кориолиса при сложном	
		движении точки.	
		29. Векторная формула ускорения	
		Кориолиса.	
		30. Направление вектора ускорения	
		Кориолиса.	
		Третьи вопросы билетов.	
		1. Введение в динамику. Законы	
		классической динамики.	
		2. Два типа задач динамики точки.	
		3. Интегрирование дифференциальных	
		уравнений движения материальной	
		точки методом разделения	
		переменных.	
		4. Система материальных точек.	
		Внешние и внутренние силы, свойства	
		внутренних сил. Центр масс системы.	
		5. Механическая система. Теорема о	
		движении центра	
		масс. Сохранение движения центра	
		масс.	
		6. Количество движения точки и	
		системы. Теоремы об изменении	
		количества движения, закон	
		сохранения количества движения.	
		7. Сведения о моментах инерции.	
		8. Моменты инерции тел простейшей	
		форм (стержня, кольца, диска).	
		9. Момент количества движения точки	
		и системы. Теорема об изменении и	
		закон сохранения момента количества	

№ п/п	Наименование дисциплины	Перечень вопросов и заданий	Проверяемые компетенции
1	2	3	4
		движения.	
		10. Момент количества движения	
		твердого тела при его вращении вокруг	
		неподвижной оси.	
		11. Работа силы тяжести, силы	
		упругости пружины и силы трения	
		скольжения.	
		12. Теоремы об изменении	
		кинетической энергии для	
		материальной точки и для системы.	
		13. Принцип Даламбера для	
		материальной точки и системы.	
		14. Главный вектор и главный момент	
		сил инерции.	
		15. Силы инерции при поступательном,	
		вращательном и плоскопараллельном	
		движениях твердого тела.	
		16. Принцип возможных перемещений.	
		17. Общее уравнение динамики.	
		18. Обобщенные координаты и силы.	
		Примеры вычисления.	
		19. Уравнения движения механической	
		системы в независимых обобщенных	
		координатах (уравнения Лагранжа	
		второго рода).	
		20. Потенциальная энергия	
		механической системы.	
		Консервативные системы.	
		21. Закон сохранения механической	
		энергии. Диссипативные системы.	
		22. Устойчивость равновесия	
		механической системы.	
		23. Теория малых свободных	
		колебаний механических систем при	
		отсутствии сил сопротивления.	
		24. Малые свободные колебания при	
		наличии сил сопротивления.	
		25. Вынужденные малые колебания	
		механических систем при отсутствии	
		сил сопротивления. Явление резонанса.	
		26. Вынужденные малые колебания	
		механических систем при наличии сил	
		сопротивления. Явление резонанса.	
		27. Основные положения	
		приближенной теории удара. Удар тела	
		о неподвижную поверхность.	
		Коэффициент восстановления. Фазы	
		удара. Ударные импульсы для двух фаз	
		удара. Теорема Карно.	
		28. Прямой центральный удар двух	
		тел. Частные случаи. Удар по	
		вращающемуся твердому телу.	

№ п/п	Наименование дисциплины	Перечень вопросов и заданий	Проверяемые компетенции
1	2	3	4
		Условия отсутствия ударных реакций в опорах вращающегося тела. Центр удара. 29. Кинетическая энергия материальной точки и системы материальных точек. 30. Кинетическая энергия твердого	
		тела, совершающего плоско-параллельное движение.	
2	Перечень вопросов для подготовки к государственному итоговому экзамену	Первые вопросы билетов. 1. Сила. Система сил. Эквивалентные системы сил. Равнодействующая системы сил. Распределенная нагрузка. 2. Связи. Силы реакции связей. 3. Основные типы связей. 3. Основные понятия и аксиомы статики. 4. Сложение сил. Проекция силы на ось и на плоскость. Аналитический способ задания и сложения сил. 5. Плоская и пространственная системы сходящихся сил, условия их равновесия. Геометрические и аналитические методы решения задач. 6. Теорема о трех силах. 7. Момент силы относительно центра в виде вектора. Его свойства. 8. Алгебраический момент силы	ОПК-1, ОПК-5, ОПК-8, ПК-1, ПК-2, ПК-3, ПК-4, УК-1, УК-2
		относительно центра. 9. Пара сил. Векторный и алгебраический моменты пары сил. 10. Теоремы о парах. Условия равновесия твердого тела под действием систем пар сил. 11. Теорема Вариньона о моменте равнодействующей. 12. Приведение произвольной плоской системы сил к простейшему виду. Частные случаи приведения. 13. Различные формы условий равновесия для произвольной плоской системы сил. 14. Плоская система параллельных сил. Условия ее равновесия. 15. Понятие о статической определимости и неопределимости. Равновесие системы твердых тел. Способ расчленения. 16. Определение внутренних усилий в балке.	

№ п/п	Наименование дисциплины	Перечень вопросов и заданий	Проверяемые компетенции
1	2	3	4
		17. Понятия геометрической	
		неизменяемости, изменяемости,	
		мгновенной изменяемости. Условия	
		геометрической неизменяемости	
		плоских ферм.	
		18. Расчет плоской фермы методом	
		вырезания узлов.	
		19. Расчет плоской фермы способом	
		сквозных сечений.	
		20. Приведение произвольной системы	
		сил к одному центру.	
		Главный вектор и главный момент системы сил. Частные случаи	
		приведения.	
		21. Зависимость между главными	
		моментами относительно двух	
		различных центров приведения.	
		22. Общие условия равновесия	
		произвольной системы сил.	
		23. Момент силы относительно оси.	
		Его свойства.	
		24. Способы определения момента	
		силы относительно оси.	
		Аналитические формулы для моментов	
		силы относительно осей координат.	
		25. Уравнения равновесия	
		произвольной пространственной	
		системы сил. Случай параллельных	
		сил. 26. Центр системы параллельных сил.	
		20. центр системы параллельных сил. Центр тяжести	
		твердого тела.	
		27. Центр тяжести тела. Координаты	
		центра тяжести однородного тела.	
		28. Способы определения координат	
		центра тяжести	
		однородного тела.	
		29. Равновесие твердых тел при	
		наличии сил трения скольжения.	
		Законы Кулона, угол трения, конус	
		трения.	
		30. Трение качения, коэффициент	
		трения качения. Равновесие твердых	
		тел при наличии сил трения качения.	

4. Порядок проведения государственного экзамена

Научно-квалификационная работа (НКР) сдается аспирантом, в перепле-тенном варианте с электронной версией, в аспирантуру за месяц до начала ито-говой аттестации. В течение 3-х дней с момента сдачи работы в аспирантуру НКР передается научному руководителю для написания отзыва (срок написа-ния отзыва до 7 рабочих дней). После этого научный руководитель сдает НКР с отзывом в

аспирантуру и НКР передается рецензенту (срок написания рецензии до 7 рабочих дней).

Внесение изменений в макет НКР после получения рецензии не допуска-ется. Научный руководитель согласует дату проведения предзащиты НКР ас-пирантов с аспирантурой. Предзащита проводится не позднее, чем за 10 дней до научного доклада по НКР. Аспирант имеет право до защиты ознакомиться с отзывом научного руководителя и рецензией на свою НКР.

Далее проводится предзащита НКР. Аспирант знакомит членов кафедры с НКР, отзывами научного руководителя и рецензента, отвечает на вопросы в хо-де обсуждения. По результатам предзащиты заведующий кафедрой не позднее, чем за 3 дня до защиты принимает решение о допуске к докладу и ставит под-пись на титульном листе работы. После принятия решения о допуске заведую-щий выпускающей кафедрой сдает НКР, подписанную аспирантом и научным руководителем, в аспирантуру с отзывами научного руководителя и рецензента. К докладу допускаются только те аспиранты, которые полностью прошли соответствующую образовательную программу и не имеют академических и финансовых задолженностей. НКР, подготовленная без соблюдения требований Минобрнауки РФ, к докладу не допускается.

Научный доклад проводится на открытом заседании ГЭК, состав которой утвержден приказом ректора института.

Процедура доклада включает следующие этапы:

- 1. Доклад аспиранта об основном содержании работы (до 15 минут). Док-лад включает в себя актуальность темы, характер изученности проблемы, цели и задачи исследования, методы исследования и анализа, полученные результа-ты, выводы и рекомендации. Доклад излагается свободно, доходчиво, четко и иллюстрируется схемами и диаграммами. Аспирант имеет право использовать различные виды презентаций результатов своей работы. Основные таблицы оформляются в виде раздаточных материалов, которые выдаются каждому чле-ну комиссии.
- 2. Озвучивание отзывов на НКР.
- 3. Ответы аспиранта на замечания рецензента.
- 4. Ответы аспиранта на вопросы членов комиссии. Ответы на вопросы, их полнота и глубина влияют на оценку работы; они должны быть содержатель-ными и лаконичными.

Результаты защиты объявляются аспиранту в тот же день после утвер-ждения протоколов председателем ГЭК.

НКР аспиранту не возвращается и хранится в аспирантуре в определен-ные нормативами сроки.

При неудовлетворительной оценке НКР аспирант имеет право повторно ее защищать после доработки и внесения исправлений, не ранее следующего учебного года и не более одного (повторного) раза.

Общие итоги всех защит подводятся ГЭК. По итогам доклада выпускаю-щая кафедра может рекомендовать отдельные работы к публикации, а резуль-таты исследований – к защите диссертации в диссертационном совете.

5. Рекомендации обучающимся по подготовке к государственному экзамену

5.1. Основная литература

№ п\п	Наименование	Автор(ы)	Год и место издания. Место доступа	Используется при изучении дисциплины (модуля)
1.	Психология и педагогика в схемах и комментариях	В.Г. Крысько	2010, ЭКСМО. ИТБ УЛУПС (Абонемент ЮИ)	Всех разделов
2.	Психология и педагогика	А.А. Реан, Н.В. Бордовская, С.И. Розум	2008, "Питер". НТБ (ЭЭ); НТБ (уч.5); НТБ (фб.); НТБ (чз.1)	Всех разделов
3.	Курс теоретической механики. Т. 1, 2.	Лойцянский Л.Г., Лурье А.И.	1987, М.: Высшая школа Библиотека МИИТ	Все разделы
4.	Курс теоретической механики. Учебник для ВУЗов. Т. 1, 2.	Бутенин Н.В., Лунц Я.Л., Меркин Д.Р.	2002, СПб.: Изд. – во «Лань». Библиотека МИИТ	Все разделы

5.2. Дополнительная литература

№ п\п	Наименование	Автор(ы)	Год и место издания. Место доступа	Используется при изучении дисциплины (модуля)
1.	Кандидатская диссертация по	Ю.В. Баскаков,	2014, ФГБОУ	Всех разделов
	техническим наукам как	Н.Г. Дюргеров,	ВПО РГУПС.	
	научно-квалификационное	А.В. Костюков	ГПНТБ	
	исследование: пособие для			
	молодых ученых.			