МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.05 Системы обеспечения движения поездов, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Полупроводниковая схемотехника

Специальность: 23.05.05 Системы обеспечения движения

поездов

Специализация: Электроснабжение железных дорог

Форма обучения: Заочная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 167365

Подписал: заведующий кафедрой Бугреев Виктор Алексеевич

Дата: 10.04.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины «Полупроводниковая схемотехника» является формирование у обучающихся общепрофессиональных компетенций и приобретение ими:

- знаний о физике процессов, происходящих в полупроводниковых материалах; об основных типах и областях применения электронных приборов и устройств; о принципах действия, параметрах и характеристиках современных полупроводниковых, электровакуумных и газоразрядных устройств (усилителей, генераторов, вторичных источников питания, цифровых преобразователей);
- умений разбираться в работе основных полупроводниковых приборов; использовать методы расчета и измерения параметров аналоговых и цифровых устройств; выбирать принципиальные электрические схемы; проектировать типовые электрические и электронные устройства;
- навыков измерения параметров электронных приборов; расчета усилителей, генераторов, импульсных и цифровых устройств; расчёта параметров усилителей, электронных преобразовательных устройств.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-54 - Способен обеспечить рабочие места необходимыми электротехническими материалами, запасными частями, приборами для эксплуатации устройств электроснабжения железных дорог.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- знаний об основных типах и областях применения электронных приборов и устройств; о принципах действия, параметрах и характеристиках современных полупроводниковых, электровакуумных и газоразрядных устройств (усилителей, генераторов, вторичных источников питания, цифровых преобразователей, микропроцессорных управляющих и измерительных комплексов);

Уметь:

умений использовать методы расчета и измерения параметров аналоговых и цифровых устройств; разрабатывать принципиальные

электрические схемы; проектировать типовые электрические и электронные устройства;

Владеть:

умений использовать методы расчета и измерения параметров аналоговых и цифровых устройств; разрабатывать принципиальные электрические схемы; проектировать типовые электрические и электронные устройства;

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 9 з.е. (324 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип үчебных занятий	Количество часов	
тип учесных занятии		Семестр №3
Контактная работа при проведении учебных занятий (всего):	36	36
В том числе:		
Занятия лекционного типа	12	12
Занятия семинарского типа	24	24

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 288 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

№	Tovoryva volvyvovyv v povaryvi / vmoryvo o oo vorvovyvo
Π/Π	Тематика лекционных занятий / краткое содержание
1	Раздел 1. Основы работы полупроводниковых приборов
	1.1. Полупроводники и их физические свойства
	- Собственный полупроводник.
	- Полупроводник с электронной проводимостью.
	- Полупроводник с дырочной проводимостью.
	- Диффузионный ток в полупроводниках.
	- Контактные явления в полупроводниках, прямое и обратное включение р-п-перехода.
	- Инжекция неосновных носителей.
	- Диффузионная ёмкость.
	- Барьерная ёмкость р-п-перехода.
	- Частотные свойства полупроводников.
	- Импульсные свойства полупроводникового прибора
	1.2. Полупроводниковые диоды
	- Параметры и характеристики диода
	- Применение диода для выпрямления переменного тока
	- Стабилитроны
	- Варикапы
	- Тиристоры
	- Импульсные диоды
	- Туннельные диоды
	1.3. Оптоэлектронные приборы
	- Общие сведения о компонентах оптоэлектроники
	- Светодиоды
	- Фоторезисторы
	- Фотодиоды
	- Фототранзисторы и фототиристоры
	- Оптроны
	1.4. Биполярные транзисторы
	- Физические принципы работы транзистора
	- Режимы работы транзистора - Усиление сигналов с помощью транзистора
	- Основные схемы включения и параметры транзисторов - Математические модели транзисторов
	1.5. Полевые транзисторы
	- Разновидности и режимы работы полевых транзисторов
	- Схемы включения полевых транзисторов
	- Параметры и эквивалентные схемы полевых транзисторов
	- Преимущества, недостатки и области применения полевых транзисторов
2	Раздел 2. Усилители
	2.1. Операционные усилители
	- Основные свойства операционных усилителей
	- Параметры и характеристики операционных усилителей
	- Классификация операционных усилителей
	2.2. Электронные усилители электрических сигналов
	- Классификация и основные параметры усилителей
	- Основные характеристики и параметры усилителей
	- Обратная связь в усилителях
	- Влияние обратной связи на параметры усилителей
	1 1

No॒	T	
Π/Π	Тематика лекционных занятий / краткое содержание	
	2.3. Транзисторные усилители	
	- Методы задания начального режима работы транзистора	
	- Усилитель на биполярном транзисторе с общим эмиттером	
	- Классы усиления транзисторных усилительных каскадов	
	- Усилитель на полевом транзисторе	
	- Эмиттерный и истоковый повторители	
	- Дифференциальный усилитель	
	- Выходные усилители мощности	
3	Раздел 3. Основы полупроводниковой схемотехники	
	3.1. Применение операционных усилителей	
	- Инвертирующий усилитель	
	- Неинвертирующий усилитель	
	- Суммирующий и вычитающий усилители	
	- Интеграторы	
	- Дифференциаторы	
	3.2. Активные фильтры	
	- Назначение и классификация активных фильтров	
	- Схемная реализация активных фильтров	
	3.3. Аналоговые компараторы напряжения	
	- Устройство, принцип действия и характеристики аналоговых компараторов	
	- Компараторы на интегральных микросхемах	
	- Триггер Шмитта на основе компараторов	
	3.4. Электронные ключи	
	- Аналоговые коммутаторы	
	- Ключи на биполярных транзисторах	
	- Динамические характеристики ключей на биполярных транзисторах и повышение их	
	быстродействия	
	- Ключи на полевых транзисторах	
	- Динамические характеристики ключей на полевых транзисторах и повышение их быстродействия	
	3.5. Источники вторичного электропитания	
	- Основные требования и определения	
	- Линейные стабилизаторы напряжения	
	- Импульсные стабилизаторы напряжения	
4	Раздел 4. Экзамен	

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание
1	Исследование полупроводниковых диодов
	Цель работы:
	1. Исследование напряжения и тока диода при прямом и обратном смещении р-п-перехода.
	2. Построение и исследование вольтамперной характеристики (ВАХ) для полупроводникового
	диода.
	3. Исследование сопротивления диода при прямом и обратном смещении по вольтамперной
	характеристике.
	4. Анализ сопротивления диода (прямое и обратное смещение) на переменном и постоянном токе.
	5. Измерение напряжения изгиба вольтамперной характеристики.

№ п/п	Наименование лабораторных работ / краткое содержание		
2	Исследование биполярного транзистора		
	Цель работы:		
	1. Исследование зависимости тока коллектора от тока базы и напряжения база-эмиттер.		
	2. Анализ зависимости коэффициента усиления по постоянному току от тока коллектора.		
	3. Исследование работы биполярного транзистора в режиме отсечки.		
	4. Получение входных и выходных характеристик транзистора.		
	5. Определение коэффициента передачи по переменному току.		
	6. Исследование динамического входного сопротивления транзистора.		
3	Исследование тиристоров		
	Цель работы:		
	1. Исследование физических процессов, происходящих в тиристоре.		
	2. Построение его вольтамперной характеристики.		
	3. Изучение способов переключения тиристора.		
4	Исследование однофазных неуправляемых выпрямителей		
	Цель работы:		
	1. Изучить принцип действия и основные характеристики однофазных неуправляемых		
	выпрямителей		
	2. Ознакомиться с принципами действия и основными характеристиками сглаживающих фильтров.		

Практические занятия

No	Тематика практических занятий/краткое содержание		
п/п			
1	Основы работы полупроводниковых приборов		
	Расчет схем с полупроводниковыми диодами		
2	Основы работы полупроводниковых приборов		
	Расчёт схем на основе биполярных транзисторов		
3	Усилители		
	Расчёт усилительных каскадов на транзисторах		
4	Усилители		
	Расчёт усилительного каскада на биполярном транзисторе		
5	Основы полупроводниковой схемотехники		
	Усилительные схемы на основе микросхем ОУ		
6	Основы полупроводниковой схемотехники		
	Расчёт импульсных устройств		

4.3. Самостоятельная работа обучающихся.

No ′	Вид самостоятельной работы
п/п	
1	Работа с теоретичеким (лекционным) материалом.
2	Подготовка к практическим занятиям.
3	Подготовка к лабораторным занятиям.
4	Прохождение электронного курса и выполнение заданий
5	Подготовка к контрольной работе.
6	Подготовка к промежуточной аттестации.
7	Подготовка к текущему контролю.

4.4. Примерный перечень тем контрольных работ РАСЧЁТ СХЕМЫ УПРАВЛЕНИЯ ТИРИСТОРНЫМ КЛЮЧОМ

- 1. Рассчитать полупроводниковую схему управления тиристорным силовым однофазным ключом регулятора мощности.
 - 2. Выполнить схему регулятора мощности и описать его работу.
- 3. Построить временные диаграммы работы регулятора мощности для заданного режима.

РАСЧЁТ ДОПУСТИМОЙ ПЕРЕГРУЗКИ ПОЛУПРОВОДНИКОВОГО ПРИБОРА ПО ТОКУ

- 1. Рассчитать рабочие перегрузки полупроводникового прибора с охладителем при заданной температуре охлаждающей среды, скорости охлаждающего воздуха, предназначенного для роботы в схеме силового однофазного ключа регулятора мощности, и построить семейство перегрузочных характеристик для предварительной нагрузки, равной значениям 0; 0,2; 0,4; 0,6; 0,8 максимально допустимого среднего тока полупроводникового прибора и длительности перегрузки, равной значениям 0,1; 1,0; 10; 100; 1000 с.
 - 2. Результаты расчёта представить в виде таблиц и графиков.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/ п	Библиографиче ское описание	Место доступа
1	Электроника	https://urait.ru/viewer/elektronika-510731#page/1
	Миловзоров	
	О.В., Панков	
	И.Г. Учебник	
	Юрайт, 2021,	
	2021	
2	Электроника и	https://umczdt.ru/read/18647/?page=1
	преобразовател	
	ьная техника	
	Бурков А.Т.	
	Учебник	
	ФГБОУ	
	«Учебно-	
	методический	
	центр по	
	образованию на	

	железнодорожн	
	ом транспорте»	
	, 2015	
3	Электроника и	https://phys-el.ru/media/files/gnuchev_eldevices.pdf
	схемотехника.	
	Электронные	
	приборы.	
	Физические	
	основы	
	электроники	
	Гнучев Н.М.	
	Учебное	
	пособие Изд-во	
	Политехн. ун-та	
	, 2013	
4	Основы	https://www.elec.ru/viewer?url=files/2020/01/27/CHizhma_S.NOsnovue_
	схемотехники	shemotehniki.pdf
	Чижма С.Н	
	Учебное	
	пособие	
	Издательство	
	«Апельсин»,	
	2008	
5	Силовая	
	электроника	https://urait.ru/viewer/silovaya-elektronika-489539#page/1
	Ю.К. Розанов,	
	M.B.	
	Рябчицкий,	
	А.А. Кваснюк	
	Учебник	
	Издательский	
	дом МЭИ, 2009	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО - ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. Официальный сайт МИИТ http://miit.ru/
- 3. Электронно-библиотечная система POAT http://www.biblioteka.rgotups.ru/

- 4. Электронно-библиотечная система Научно-технической библиотеки МИИТ http://library.miit.ru/
- 5. Поисковые системы «Яндекс», «Google» для доступа к тематическим информационным ресурсам
- 6. Электронно-библиотечная система издательства «Лань» http://e.lanbook.com/
 - 7. Электронно-библиотечная система ibooks.ru http://ibooks.ru/
- 8. Электронно-библиотечная система «ЮРАЙТ» http://www.biblio-online.ru/
- 8. Электронно-библиотечная система «Академия» http://academia-moscow.ru/
 - 10. Электронно-библиотечная система «BOOK.ru» http://www.book.ru/
- 11. Электронно-библиотечная система «ZNANIUM.COM» http://www.znanium.com/
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Программное обеспечение должно позволять выполнить все предусмотренные учебным планом виды учебной работы по дисциплине: лекции, практические работы, лабораторные работы, выполнение курсовой работы. Все необходимые для изучения дисциплины учебно-методические материалы объединены в Учебно-методический комплекс и размещены на сайте университета.

При осуществлении образовательного процесса по дисциплине используются следующие информационные технологии, программное обеспечение и информационные справочные системы:

- для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: Microsoft Office.
- для выполнения текущего контроля успеваемости: Браузер Internet Explorer.
 - для выполнения практических заданий: Microsoft Office.

- для самостоятельной работы студентов: операционная система Windows, Microsoft Office, Браузер Internet Explorer с установленным Adobe Flash Player, Adobe Acrobat.
 - для оформления отчетов и иной документации: Microsoft Office.
- для осуществления учебного процесса с использованием дистанционных образовательных технологий: операционная система Windows, Microsoft Office, Браузер Internet Explorerc установленным Adobe Flash Player, Adobe Acrobat.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

ОПИСАНИЕ МАТЕРИАЛЬНО - ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Требования к аудиториям (помещениям, кабинетам) для проведения занятий с указанием соответствующего оснащения

Учебная аудитория для проведения занятий соответствует требованиям охраны труда по освещенности, количеству рабочих (посадочных) мест студентов и качеству учебной (аудиторной) доски, а также соответствовать условиям пожарной безопасности. Освещённость рабочих мест соответствует действующим СНиПам.

Кабинеты оснащены следующим оборудованием, приборами и расходными материалами, обеспечивающими проведение предусмотренных учебным планом занятий по дисциплине:

-для проведения лекций, демонстрации презентаций и ведения интерактивных занятий: переносной проектор и компьютер с минимальными требованиями.

- для выполнения текущего контроля успеваемости: учебная аудитория для проведения занятий;
- для проведения практических занятий: учебная аудитория для проведения занятий;
- для организации самостоятельной работы студентов: учебная аудитория для проведения занятий;
- для выполнения текущего контроля успеваемости: учебная аудитория для проведения занятий.
 - .2. Перечень лабораторного оборудования
 - 9. Форма промежуточной аттестации:

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, к.н. кафедры «Электрификация и электроснабжение»

С.Л. Рудницкий

Согласовано:

Заведующий кафедрой ЭЭ РОАТ

В.А. Бугреев

Председатель учебно-методической

комиссии С.Н. Климов