МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Прикладная гидравлика

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Электрический транспорт железных дорог

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 27.05.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения учебной дисциплины «Прикладная гидравлика» являются:

- усвоение студентами основ теории расчета;
- освоить материал, который позволит выработать навыки применения теоретических сведений к решению конкретных задач технического характера и тем самым освоить практику гидравлических расчетов.

Задачей освоения учебной дисциплины «Прикладная гидравлика» является:

- освоение вопросов функционирования различных гидравлических машин и гидравлических приборов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем тягового подвижного состава.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

гидравлические сопротивления, методы расчета и проектирования разнообразных гидравлических сооружений, трубопроводов для подачи всевозможных жид-костей, гидромашин

Уметь:

применять теоретические знания к решению конкретных задач технического характера и тем самым освоить практику гидравлических расчетов,

Владеть:

навыками расчета гидравлических схем и построения гидравлической характеристики трубопровода

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):	68	68
В том числе:		
Занятия лекционного типа	34	34
Занятия семинарского типа	34	34

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 40 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание
п/п	
1	Основные физические свойства капельных жидкостей.
	Рассматриваемые вопросы:
	- понятие капельных жидкостей;
	- физические свойства капельных жидкостей (плотность, вязкость, текучесть и др.);
	- силы, действующие на жидкость;
	- давление.
2	Гидростатика, основное уравнение, сила давления на плоские и криволинейные
	поверхности.
	Рассматриваемые вопросы:
	- гидростатическое давление и его свойства;
	- основное уравнение гидростатики;
	- уравнение Эйлера;

No	Таматика пакционни у запятий / кратков сопаручания
Π/Π	Тематика лекционных занятий / краткое содержание
	- сила давления жидкости на плоскую стенку;
3	- закон Архимеда.
3	Основы кинематики жидкости.
	Рассматриваемые вопросы:
	- основные понятия и определения;
4	- уравнение расходов.
4	Динамика жидкости. Уравнение Бернулли.
	Рассматриваемые вопросы: - уравнение Бернулли для элементарной струйки идеальной жидкости;
	- уравнение Бернулли для потока реальной жидкости;
	- трубка Пито;
	- расходомер Вентури.
5	Режимы движения жидкости. Гидравлические сопротивления.
3	Рассматриваемые вопросы:
	- режимы движения жидкости. Формула Рейнольдса;
	- местные сопротивления. Уравнение Вейсбаха;
	- сопротивления по длине. Уравнение Вейсбаха-Дарси;
	- физический смысл коэффициента потерь
6	Ламинарный и турбулентный режим движения жидкости.
	Рассматриваемые вопросы:
	- ламинарный режим движения жидкости в круглых трубах;
	- определение расхода в трубопроводе при ламинарном режиме;
	- формула Пуазейля;
	- турбулентный режим движения жидкости;
	- график Никурадзе.
7	Гидравлический расчет трубопровода.
	Рассматриваемые вопросы:
	- расчет трубопровода одного диаметра;
	- самотечный трубопровод;
	- последовательное соединение трубопроводов;
	- параллельное соединение трубопроводов;
	- разветвленный трубопровод;
	- сифонный трубопровод;
	- трубопровод с насосной подачей жидкости.
8	Гидравлический удар
	Рассматриваемые вопросы:
	- колебательный процесс в трубопроводе при гидравлическом ударе;
	- формула Жуковского;
0	- защита трубопроводных систем от гидравлического удара.
9	Истечение жидкости из отверстий и насадок.
	Рассматриваемые вопросы:
	- истечение жидкости из малого отверстия;
	- истечение из малого отверстия в тонкой стенке при постоянном уровне;
	- истечение из отверстия в тонкой стенке при переменном напоре;
	истечение под уровень;истечение через насадки;
	I- истечение жилкости через оольшие отверсти я
10	- истечение жидкости через большие отверстия. К пассификация и расцет насосних установок
10	- истечение жидкости через оольшие отверстия. Классификация и расчет насосных установок. Рассматриваемые вопросы:

№ п/п	Тематика лекционных занятий / краткое содержание
	- динамические насосы;
	- объемные насосы
	- достоинства и недостатки насосов различных типов;
	- способы регулирования работы насосов.
11	Объемные насосы и гидромоторы.
	Рассматриваемые вопросы:
	- шестеренные гидромашины;
	- пластинчатые гидромашины;
	- аксиально-поршневые гидромашины.
12	Гидроцилиндры (принцип действия, назначение, конструкция, параметры).
	Рассматриваемые вопросы:
	- дифференциальные гидроцилиндры;
	- телескопические гидроцилиндры.

4.2. Занятия семинарского типа.

Лабораторные работы

No	
п/п	Наименование лабораторных работ / краткое содержание
1	Изменения избълдения и рамини метринеского наризмия
1	Изменение избыточного и вакуумметрического давления.
	В результате выполнения лабораторной работы определяется избыточное и ваккуметрическое
	давление с помощью манометра и пьезометра; вычисляется абсолютная и относительная погрешность
	вычислений.
2	Определение удельных энергий жидкости в потоке с переменным живым сечением.
	В результате выполнения лабораторной работы измеряется пьезометрический напор в трубопроводе с
	различными сечениями; по результатам вычислений строится график напора.
3	Определение режимов движения жидкости.
	В результате выполнения лабораторной работы на основе проведенных опытов и на основе
	результатов вычислений определяется режим течения жидкости (ламинарный, турбулентный)
4	Определение гидравлических сопротивлений по длине напорного трубопровода и
	коэффициента Дарси.
	В результате выполнения лабораторной работы определяются гидравлические сопротивления по
	длине напорного трубопровода и коэффициента Дарси.
5	Определение коэффициента местных гидравлических сопротивлений.
	В результате выполнения лабораторной работы определяются коэффициента местных гидравлических
	сопротивлений.
6	Изучение гидравлического удара.
	В результате выполнения лабораторной работы демонстрируется гидравлический удар, возникающий
	в трубопроводе; рассчитываются основные параметры гидравлического удара.
7	Истечение жидкости через отверстия и насадки.
	В результате выполнения лабораторной работы демонстрируется истечение через различные
	отверстия и насадки; рассчитываются основные параметры.
8	Гидравлические характеристики объемного насоса и напорного клапана.
	В результате выполнения лабораторной работы студентам необходимо получить экспериментальным
	путем расходную характеристику насоса и напорного клапана.

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Подготовка к лабораторным работам
2	Выполнение курсовой работы.
3	Подготовка к промежуточной аттестации.
4	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

В рамках курсовой работы выполняется расчет одного из предложенных вариантов заданий в соответствии с параметрами, указанными в задании.

Курсовая работа состоит из двух частей:

- 1. Расчет напорного трубопровода;
- 2. Исследование режимов работы элементов насосной установки в зависимости от характеристики центробежного насоса.

При выполнении курсовой работы определяется:

- Часть 1. Пропускная способность трубопровода (2 случая) и давление в двух сечениях, а также гидравлического удара;
- Часть 2. Режимы работы насосной установки и исследование режимов насосной установки.

Графическая часть проекта должна содержать графики, выполненные на формате A3-A4:

- 1. Построение пьезометрических линий;
- 2. Исследование изменений режима насосной установки (параллельное и последовательное соединение) на 2-4 листах.
- 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).
- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

http://library.miit.ru/ - электронно-библиотечная система Научно-технической библиотеки МИИТ.

http://elibrary.ru/ - научно-электронная библиотека.

www.i-exam.ru - единый портал интернет тестирования (тесты для самообразова-ния и контроля).

Поисковые системы: Yandex, Google, Mail.

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Компьютеры должны быть обеспечены стандартными ли-цензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже Microsoft Office 2007 (2013). Для выполнения курсовой работы используется система отображения графической информации КОМПАС.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения лекционных занятий используется специализированная лекцион-ная аудитория с мультимедиа аппаратурой и интерактивной доской. Для проведения практических занятий необходимы компьютеры с рабочими мес-тами в компьютерном классе.

9. Форма промежуточной аттестации:

Зачет в 5 семестре.

Курсовая работа в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, старший научный сотрудник, к.н. кафедры «Наземные транспортно-технологические средства»

А.К. Сокольский

Согласовано:

Заведующий кафедрой ЭиЛ О.Е. Пудовиков

Председатель учебно-методической

комиссии С.В. Володин