МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.03 Подвижной состав железных дорог, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Прикладная гидравлика

Специальность: 23.05.03 Подвижной состав железных дорог

Специализация: Высокоскоростной наземный транспорт

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5214

Подписал: заведующий кафедрой Пудовиков Олег

Евгеньевич

Дата: 27.06.2025

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- изучение основных свойств капельных жидкостей;
- изучение основных законов гидростатики, кинематики жидкости и гидродинамики;
- изучение процессов, возникающих при гидравлическом ударе и истечение через отверстие и насадки.
- изучение устройства, принципа работы и методик расчета простейших насосных установоки гидравлических машин.

Задачами дисциплины (модуля) являются:

- приобретение теоретических знаний и практических навыков, которые включают производственно-технологическую, организационно-управленческую деятельность на объектах, которыми являются локомотивы;
- овладение теоретическими знаниями в области прикладной гидромеханики.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

ПК-9 - Имеет навык выполнять обоснование параметров конструкции конструкций и систем подвижного состава высокоскоростного наземного транспорта.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные физико-механические свойства жидкостей;
- законы гидростатики и гидродинамики;
- приборы и методы измерения давления;
- простые гидравлические машины;
- методы определения расхода жидкости;
- дифференциальные уравнения неразрывности, Эйлера и Навье Стокса;
 - уравнение Бернулли;
 - теорию гидродинамического подобия;
- основы математического моделирования гидромеханических процессов;

- режимы течения жидкостей (ламинарный и турбулентный);
- классификацию гидравлических потерь (линейные потери напора и потери напора в местных сопротивлениях);
- закономерности истечения жидкости через отверстия, насадки и водосливы.

Уметь:

- выполнять математические расчеты гидравлических процессов и устройств;
- составлять математические и компьютерные модели гидродинамических процессов и устройств;
 - проводить гидравлический расчет трубопроводов;
- применять знания аналитических и численных методов к решению конкретных задач гидромеханики;
- выполнять гидравлические расчеты трубопроводов по определению потерь напора;
- использовать на практике приборы и методы определения скоростей, давлений и расходов движущихся жидкостей.

Владеть:

- навыками применения основных законов гидравлики к решению конкретных прикладных задач;
 - методами измерения параметров гидродинамических процессов;
- навыками применения современных средств измерения параметров движущихся жидкостей;
- навыками использования методов подобия и математического моделирования в гидромеханике.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №5
Контактная работа при проведении учебных занятий (всего):		64

В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 80 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	T	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Основные физические свойства капельных жидкостей.	
	Рассматриваемые вопросы:	
	- понятие капельных жидкостей;	
	- физические свойства капельных жидкостей (плотность, вязкость, текучесть и др.);	
	- силы, действующие на жидкость;	
	- давление.	
2	Гидростатика, основное уравнение, сила давления на плоские и криволинейные	
	поверхности.	
	Рассматриваемые вопросы:	
	- гидростатическое давление и его свойства;	
	- основное уравнение гидростатики;	
	- уравнение Эйлера;	
	- сила давления жидкости на плоскую стенку;	
	- закон Архимеда.	
3	Основы кинематики жидкости.	
	Рассматриваемые вопросы:	
	- основные понятия и определения;	
	- уравнение расходов.	
4	Динамика жидкости. Уравнение Бернулли.	
	Рассматриваемые вопросы:	
	- уравнение Бернулли для элементарной струйки идеальной жидкости;	
	- уравнение Бернулли для потока реальной жидкости;	

No		
п/п	Тематика лекционных занятий / краткое содержание	
11/11	- трубка Пито;	
	- расходомер Вентури.	
5	Режимы движения жидкости. Гидравлические сопротивления.	
3	Рассматриваемые вопросы:	
	- режимы движения жидкости. Формула Рейнольдса;	
	- местные сопротивления. Уравнение Вейсбаха;	
	- сопротивления по длине. Уравнение Вейсбаха-Дарси;	
	- физический смысл коэффициента потерь.	
6	Ламинарный и турбулентный режим движения жидкости.	
Ü	Рассматриваемые вопросы:	
	- ламинарный режим движения жидкости в круглых трубах;	
	- определение расхода в трубопроводе при ламинарном режиме;	
	- формула Пуазейля;	
	- турбулентный режим движения жидкости;	
	- график Никурадзе.	
7	Гидравлический расчет трубопровода.	
	Рассматриваемые вопросы:	
	- расчет трубопровода одного диаметра;	
	- самотечный трубопровод;	
	- последовательное соединение трубопроводов;	
	- параллельное соединение трубопроводов;	
	- разветвленный трубопровод;	
	- сифонный трубопровод;	
	- трубопровод с насосной подачей жидкости.	
8	Гидравлический удар.	
	Рассматриваемые вопросы:	
	- колебательный процесс в трубопроводе при гидравлическом ударе;	
	- формула Жуковского;	
	- защита трубопроводных систем от гидравлического удара.	
9	Истечение жидкости из отверстий и насадок.	
	Рассматриваемые вопросы:	
	- истечение жидкости из малого отверстия;	
	- истечение из малого отверстия в тонкой стенке при постоянном уровне;	
	- истечение из отверстия в тонкой стенке при переменном напоре;	
	истечение под уровень;истечение через насадки;	
	- истечение жидкости через большие отверстия.	
10	Классификация и расчет насосных установок.	
10	Рассматриваемые вопросы:	
	- параметры работы насоса;	
	- динамические насосы;	
	- объемные насосы	
	- достоинства и недостатки насосов различных типов;	
	- способы регулирования работы насосов.	
11	Объемные насосы и гидромоторы.	
-	Рассматриваемые вопросы:	
	- шестеренные гидромашины;	
	- пластинчатые гидромашины;	
	- аксиально-поршневые гидромашины.	
12	Гидроцилиндры (принцип действия, назначение, конструкция, параметры).	
_	, A , A (E , 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	

№ п/п	Тематика лекционных занятий / краткое содержание	
	Рассматриваемые вопросы:	
	- дифференциальные гидроцилиндры;	
	- телескопические гидроцилиндры.	

4.2. Занятия семинарского типа.

Лабораторные работы

No	Наименование лабораторных работ / краткое содержание	
Π/Π		
1	Изменение избыточного и вакуумметрического давления.	
	В результате выполнения лабораторной работы определяется избыточное и ваккуметрическое	
	давление с помощью манометра и пьезометра; вычисляется абсолютная и относительная погрешность вычислений.	
2	Определение удельных энергий жидкости в потоке с переменным живым сечением.	
	В результате выполнения лабораторной работы измеряется пьезометрический напор в трубопроводе с различными сечениями; по результатам вычислений строится график напора.	
3	Определение режимов движения жидкости.	
	В результате выполнения лабораторной работы на основе проведенных опытов и на основе	
	результатов вычислений определяется режим течения жидкости (ламинарный, турбулентный)	
4	Определение гидравлических сопротивлений по длине напорного трубопровода и	
	коэффициента Дарси.	
	В результате выполнения лабораторной работы определяются гидравлические сопротивления по длине напорного трубопровода и коэффициента Дарси.	
5	Определение коэффициента местных гидравлических сопротивлений.	
	В результате выполнения лабораторной работы определяются коэффициента местных гидравлических сопротивлений.	
6	Изучение гидравлического удара.	
	В результате выполнения лабораторной работы демонстрируется гидравлический удар, возникающий в трубопроводе; рассчитываются основные параметры гидравлического удара.	
7	Истечение жидкости через отверстия и насадки.	
	В результате выполнения лабораторной работы демонстрируется истечение через различные	
	отверстия и насадки; рассчитываются основные параметры.	
8	Гидравлические характеристики объемного насоса и напорного клапана.	
	В результате выполнения лабораторной работы студентам необходимо получить экспериментальным	
	путем расходную характеристику насоса и напорного клапана.	

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы	
1	Проработка учебного материала по учебной и научной литературе	
2	Выполнение курсовой работы.	
3	Подготовка к промежуточной аттестации.	
4	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

Работа состоит из двух частей:

- 1. Расчет напорного трубопровода;
- 2. Исследование режимов работы элементов насосной установки в зависимости от характеристики центробежного насоса.

При выполнении работы определяется:

- Часть 1. Пропускная способность трубопровода (2 случая) и давление в двух сечениях, а также гидравлического удара;
- Часть 2. Режимы работы насосной установки и исследование режимов насосной установки.

Графическая часть должна содержать графики, выполненные на формате A3-A4:

- 1. Построение пьезометрических линий;
- 2. Исследование изменений режима насосной установки (параллельное и последовательное соединение) на 2-4 листах.

Варианты

```
1. Часть 1
```

d 1=200 MM

d = 200 MM

d = 150 MM

1 1=300 м

 $1_2 = 400 \text{ M}$

 $1 \ 3=600 \ \mathrm{M}$

J=19

H 1=7 M

H 3=14 M

Р Н=3,2 атм

Часть 2

Марка насоса 6НД

Q = 70 л/c

d=170 MM

1 1=800 м

Н Г=60 м

h $(\Gamma.Bc)=2$ M

- 2. Часть 1
- $d_1=250 \text{ mm}$
- $d_2=200 \text{ mm}$
- $d_3=180 \text{ mm}$
- 1 1=400 м
- 1 2=300 м
- 1 3=700 м
- J=16
- $H_1=5 M$
- $H_3=10 \text{ M}$
- Р_Н=2,8 атм
- Часть 2

Марка насоса 5МД-7

- Q=24 л/c
- d=150 MM
- 1_1=1000 м
- $H_{\Gamma}=200$ м
- h_(г.вс)=4 м
- 3. Часть 1
- d_1=250 мм
- d_2=200 мм
- d 3=200 мм
- 1 1=400 м
- 1 2=300 м
- 1_3=700 м
- J=17
- $H_1=6 \text{ M}$
- $H_3=10 \text{ M}$
- Р_Н=2,5 атм
- Часть 2

Марка насоса 3К-6

$$Q=12 \pi/c$$

d=150 MM

1_1=900 м

 $H_{\Gamma}=40$ м

h (г.вс)=4 м

4. Часть 1

d 1=250 MM

 $d_2=200 \text{ mm}$

 $d_3=200 \text{ mm}$

1_1=400 м

 $1_2=300 \text{ M}$

1_3=700 м

J=17

H 1=6 M

 $H_3=10 \text{ M}$

Р_Н=2,5 атм

Часть 2

Марка насоса 4К-6

Q=32 л/c

d=200 мм

1_1=1100 м

Н Г=50 м

h (г.вс)=6 м

5. Часть 1

 $d_1=200$ мм

d_2=220 мм

 $d_3=200 \text{ mm}$

 $1_1=200 \text{ M}$

 $1_2=500 \text{ M}$

1_3=600 м

J=17

$$H_3=10 \text{ M}$$

Часть 2

Марка насоса 3В-200

$$Q=100 \text{ л/c}$$

$$d=220 \text{ MM}$$

$$H_{\Gamma}=100$$
 м

- 6. Часть 1
- $d_1=200 \text{ mm}$
- d = 220 MM
- d = 200 MM
- 1 1=200 м
- 1_2=500 м
- 1_3=600 м

Часть 2

Марка насоса 3В-200

H_
$$\Gamma$$
=100 м

$$d_1=180 \text{ mm}$$

$$d_2=220 \text{ mm}$$

$$d_3=200 \text{ mm}$$

$$1_1=300 \text{ M}$$

$$H 2=4 M$$

$$H_3=4 M$$

Часть 2

Марка насоса 6К-12

$$Q=48 \ \pi/c$$

$$d=180 \text{ MM}$$

H
$$\Gamma$$
=12 M

$$d_1=180 \text{ mm}$$

$$d_2=240 \text{ mm}$$

$$d_3=200 \text{ mm}$$

$$1_2=800$$
 м

$$H_3=5 \text{ M}$$

Часть 2

Марка насоса 5МД-7

$$Q=20$$
 л/с

$$d=160 \text{ MM}$$

 $1_1=1000 \text{ M}$

$$H_{\Gamma}=120$$
 м

h_(г.вс)=2 м

9. Часть 1

 $d_1=180 \text{ mm}$

d = 240 MM

 $d_3=200 \text{ mm}$

1_1=400 м

1_2=800 м

1_3=600 м

J = 18

H 1=10 M

H 2=4 M

H 3=5 M

Р_Н=3,5 атм

Часть 2

Марка насоса 6НД

Q=50 л/c

d=220 MM

1_1=1200 м

Н Г=60 м

h (г.вс)=4 м

10. Часть 1

d_1=180 мм

d_2=160 мм

 $d_3=200 \text{ mm}$

 $1_1=500 \text{ M}$

 $1_2 = 800 \text{ M}$

1_3=500 м

J=18

Н_1=11 м

Н_2=3 м

Н_3=5 м

Р_Н=2,5 атм

Часть 2

Марка насоса 4К-6

Q=32 л/c

d=220 мм

1_1=800 м

Н_Г=70 м

h_(г.вс)=6 м

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

No	Библиографическое	Место доступа	
Π/Π	описание	место доступа	
1	Чалова, М. Ю. Гидравлика.	URL: https://e.lanbook.com/book/175990 (дата обращения:	
	Статика. Кинематика:	01.04.2022) Текст: электронный.	
	учебное пособие для		
	студентов специальностей		
	23.05.01 «наземные		
	транспортно-		
	технологические средства»,		
	23.05.03 «подвижной состав		
	железных дорог» / Чалова М.		
	Ю., Сокольский А. К.,		
	Григорьев П. А., Пушкин А.		
	И Москва : РУТ (МИИТ),		
	2020 59 с Б. ц Текст :		
	непосредственный.		
2	Ржавцев, А. А. Гидравлика:	URL: https://e.lanbook.com/book/159312 (дата обращения:	
	учебное пособие / А. А.	01.04.2022) Текст: электронный.	
	Ржавцев. — Санкт-		
	Петербург: СПбГЛТУ, 2020.		
	— 96 c. — ISBN 978-5-9239-		
	1184-8.		
3	Набока Е.М. Гидравлика :	URL: https://e.lanbook.com/book/160536 (дата обращения:	
	учебное пособие / Набока	01.04.2022) Текст: электронный.	

	Е.М — Пермь : Пермский	
	национальный	
	исследовательский	
	политехнический	
	университет, 2013. — 139 с.	
	— ISBN 978-5-398-01100-5.	
4	Капустин, А. М. Гидравлика	URL: https://e.lanbook.com/book/129164 (дата обращения:
	и гидравлические машины:	01.04.2022) Текст: электронный.
	учебное пособие [по	
	дисциплинам "Гидравлика",	
	"Гидрогазодинамика",	
	"Гидравлика и	
	гидравлические машины",	
	"Гидравлика и гидропривод"	
	для студентов очной,	
	заочной и дистанционной	
	форм обучения] / А. М.	
	Капустин, А. П. Стариков,	
	М. С. Шерстобитов; Омский	
	государственный	
	университет путей	
	сообщения Омск:	
	· ·	
_	ОмГУПС, 2015 129 с.	URL:
5	Гудилин, Н. С. Гидравлика и	https://www.studentlibrary.ru/book/ISBN9785986720555.html
	гидропривод: учебное	(дата обращения: 01.04.2022) Текст: электронный.
	пособие для вузов / Под общ.	(дата обращения. 01.04.2022) Текст. электронный.
	ред. И. Л. Пастоева 4-е изд.	
	, стер Москва : Горная	
	книга, 2007 519 с.	
	(ГОРНОЕ	
	МАШИНОСТРОЕНИЕ) -	
	ISBN 978-5-98672-055-5.	
6	Коноплев, Е. Н.	URL: https://e.lanbook.com/book/171306 (дата обращения:
	Виртуальный лабораторный	01.04.2022) Текст: электронный.
	практикум по напорной	
	гидравлике и гидромашинам	
	: учебное пособие / Е. Н.	
	Коноплев. — Тверь : ТвГТУ,	
	2020. — 108 c. — ISBN 978-	
	5-7995-1069-5.	
7	Гидравлика : учебник и	URL: https://urait.ru/bcode/489356 (дата обращения:
	практикум для вузов / В. А.	01.04.2022) Текст: электронный.
	Кудинов, Э. М. Карташов, А.	_
	Г. Коваленко, И. В. Кудинов	
	; под редакцией В. А.	
	, под редикциен В. П.	

	Кудинова. — 4-е изд.,	
	перераб. и доп. — Москва:	
	Издательство Юрайт, 2022.	
	— 386 c.	
8	Леонтьев, В. К. Насосы и	URL: https://urait.ru/bcode/496511 (дата обращения:
	насосные установки: расчет	01.04.2022) Текст: электронный.
	насосной установки:	
	учебное пособие для вузов /	
	В. К. Леонтьев, М. А.	
	Барашева. — 2-е изд. —	
	Москва: Издательство	
	Юрайт, 2022. — 142 с. —	
	(Высшее образование). —	
	ISBN 978-5-534-13028-7.	
9	Ивановский, Ю. К. Основы	URL: https://e.lanbook.com/book/212657 (дата обращения:
	теории гидропривода:	01.04.2022) Текст: электронный.
	учебное пособие / Ю. К.	
	Ивановский, К. П. Моргунов.	
	— Санкт-Петербург : Лань,	
	2022. — 200 c. — ISBN 978-	
	5-8114-2955-4.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/),

«Гарант» (http://www.garant.ru/),

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Office (Word, Excel); ΚΟΜΠΑC-3D.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сетям INTERNET. Программное обеспечение для создания текстовых и графических документов, презентаций.
- 2. Специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.
 - 3. Для проведения тестирования: компьютерный класс; кондиционер.
- 4. Специализированная аудитория для выполнения лабораторных работ, оснащенная испытательными стендами, оборудованная рабочими столами, электрическими розетками, компьютером, проектором и экраном, и доступом в INTERNET.
 - 9. Форма промежуточной аттестации:

Зачет в 5 семестре.

Курсовая работа в 5 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, старший научный сотрудник, к.н. кафедры «Наземные транспортно-технологические средства»

А.К. Сокольский

доцент, к.н. кафедры «Наземные транспортно-технологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой ЭиЛ

О.Е. Пудовиков

Председатель учебно-методической комиссии

С.В. Володин