МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

СОГЛАСОВАНО:

УТВЕРЖДАЮ:

Выпускающая кафедра УЭРиБТ Заведующий кафедрой УЭРиБТ

Директор ИУИТ

Эмиар В.А. Шаров

С.П. Вакуленко

27 сентября 2019 г.

08 сентября 2017 г.

Кафедра «Математическое моделирование и системный анализ»

Автор Волосов Константин Александрович, д.ф.-м.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Прикладная математика

Направление подготовки: 23.03.01 – Технология транспортных процессов

Профиль: Организация перевозок и управление на

железнодорожном транспорте

Квалификация выпускника: Бакалавр

Форма обучения: очная Год начала подготовки 2017

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 2

30 сентября 2019 г.

Председатель учебно-методической

комиссии Knorf

Н.А. Клычева

Одобрено на заседании кафедры

Протокол № 9 15 октября 2019 г.

И.о. заведующего кафедрой

Г.А. Зверкина

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины «Прикладная математика» – яв-ляется изучение студентами основ теории разных разделов математики, необхо-димых для обучения умению логически верно, аргументированно и ясно строить устную и письменную речь, использовать основные законы естественнонаучных дисциплин, методы математического анализа и моделирования для следующих видов профессиональной деятельности: экспериментально-исследовательской; организационно-управленческой.

Дисциплина предназначена для получения знаний для решения следующих профессиональных задач в соответствии с видами профессиональной деятельности: Экспериментально-исследовательская деятельность:

- поиск и анализ информации по объектам исследований;
- техническое обеспечение исследований;
- анализ результатов исследований;
- участие в составе коллектива исполнителей в анализе производственно-хозяйственной деятельности транспортных предприятий;

Организационно-управленческая деятельность:

- участие в составе коллектива исполнителей в подготовке исходных данных для выбора и обоснования технических, технологических и организационных решений на основе экономического анализа;
- участие в составе коллектива исполнителей в осуществлении контроля за работой транспортно-технологических систем.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Прикладная математика" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Информатика:

Знания: структуру организации информации в сети Интернет, опасности и угрозы, возникающие при работе с информацией.

Умения: использовать современные программные продукты в своей профессиональной деятельности, разрабатывать программы обработки информации, описывать предметные области в терминах инфор-мационных моделей.

Навыки: основами автоматизации решения задач в про-фессиональной деятельности, навыками работы с одной из систем управления базами данных.

2.1.2. История техники и системы управления перевозочным процессом:

Знания: о многовариантности исторического процесса, многообразии культур и принципах их взаимодействия.

Умения: обосновывать собственную позицию по отношению к поставленной проблеме, приводя исторические примеры и аргументы.

Навыки: навыками самостоятельного осмысления и выработки суждений, основанных на интересе к отечественному и мировому историко-культурному наследию; навыками поиска причин явлений.

2.1.3. Физика:

Знания: систему фундаментальных знаний (математических, естественнонаучных, инженерных)

Умения: применять систему фундаментальных знаний в профессиональной деятельности

Навыки: навыками идентификации, формулирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем

2.2. Наименование последующих дисциплин

Результаты освоения дисциплины используются при изучении последующих учебных дисциплин:

- 2.2.1. Государственная итоговая аттестация
- 2.2.2. Хладотранспорт
- 2.2.3. Экономическая оценка инженерных решений

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ОПК-3 способностью применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем	Знать и понимать: понятия, определения, термины; методы, алгоритмы, способы решения задач курса Уметь: выделять объекты курса из окружающей среды; формулировать, выдвигать гипотезы о причинах возникновения той или иной ситуации (состояния, события), о путях (тенденциях) ее развития и последствиях; выбирать методы, приемы, алгоритмы для решения задач курса; изменять, дополнять, адаптировать, развивать методы, алгоритмы, методики для решения конкретных задач;
		Владеть: навыками систематизировать, дифференцировать факты, методы, задачи и т.д., самостоятельно формулируя основания для классификации

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

2 зачетные единицы (72 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 4
Контактная работа	39	39,15
Аудиторные занятия (всего):	39	39
В том числе:		
лекции (Л)	18	18
лабораторные работы (ЛР)(лабораторный практикум) (ЛП)	18	18
Контроль самостоятельной работы (КСР)	3	3
Самостоятельная работа (всего)	33	33
ОБЩАЯ трудоемкость дисциплины, часы:	72	72
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	2.0	2.0
Текущий контроль успеваемости (количество и вид текущего контроля)	ПК1, ПК2	ПК1, ПК2
Виды промежуточной аттестации (экзамен, зачет)	3Ч	3Ч

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

						еятельност терактивно	ти в часах/ ой форме		Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	П	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
1	4	Раздел 1 Примеры моделей, получаемых из фундаментальных законов природы. Модели нелинейных процессов диффузии и теплопроводности, теории колебаний. Нормы комплексных векторов и матриц. Необходимые сведения из разных разделов математики. Методы численного решения алгебраических уравнений. Обзор точных методов решения СЛАУ. Примеры моделей, получаемых из фундаментальных законов природы. Модели нелинейных процессов диффузии и теплопроводности, теории колебаний. Нормы комплексных векторов и матриц. Общие принципы вычисления ошибок в математических расчетах в случае комплексных данных. Число обусловленности матрицы.	2/2	4/2			12	19/4	
2	4	Раздел 2 Примеры	4/2	4/2			10	18/4	

			Виды учебной деятельности в часах/					Формы	
	ф	Toys (255-5-)				ерактивно 			текущего
№	Семестр	Тема (раздел) учебной							контроля успеваемости и
п/п	Cer	дисциплины			ПЗ/ТП	Ь		910	промежу-
			F	Ш	ПЗ/	KCP	C	Всего	точной аттестации
1	2	3	4	5	6	7	8	9	10
		физических задач							
		приводящих к СЛАУ.							
		Расчет							
		электрических							
		цепей с помощью систем уравнений							
		Кирхгофа.							
		Тепловые расчеты							
		в интегральных схемах.							
3	4	Раздел 3	4	4/2			3	11/2	
		Итерационные методы.							
		Обоснование							
		метода простых							
		итераций. Априорные							
		оценки.							
		Оценки числа							
		итераций. Вычисление							
		параметра в методе							
		простых итераций.							
		Задача на минимакс.							
		Итерационный							
		метод Зейделя. Двухслойные							
		итерационные							
	<u> </u>	схемы.							
4	4	Раздел 4 Численные методы	4	4			6	14	
		решения задач для							
		обыкновенных							
		дифференциальных уравнений.							
		Обыкновенные							
		дифференциальные уравнения и							
		уравнения и краевые условия							
		для них.							
		Разностная аппроксимация.							
		Решение							
		разностных							
		уравнений. Одношаговые							
		методы.							
		Многошаговые							
		методы: явные и неявные.							
						_		_	
5	4	Раздел 5 Численные методы	2	2		1	1	6	ПК1, Текущий
<u> </u>	1	тисленные методы	l	<u> </u>		<u> </u>	l	<u> </u>	токущии

			Виды учебной деятельности в часах/ в том числе интерактивной форме						Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной
1	2	3	4	5	6	7	8	9	аттестации 10
	4	решения задач для обыкновенных дифференциальных уравнений. Одношаговые методы. Устойчивость решения задачи Коши относительно возмущений начальных данных. Теория разностных уравнений. Анализ покоя, устойчивости и поведения модели. Анализ и интерпретация результатов моделирования на ЭВМ Неустойчивость в нелинейном случае. Разбор ситуации: Устойчивое решение, но выбран неустойчивый метод численного решения.	2			1	1		контроль по пройденным разделам (Устный опрос)
6	4	Раздел 6 Особые точки при численных расчётах. Устойчивый «узел» и «седло» в различных задачах. Жесткие уравнения. Метод стрельбы (связь с особой точкой «седло»).	2			1	1	4	ПК2, Текущий контроль по пройденным разделам (Устный опрос)
7	4	Зачет						0	34
8	<u> </u>	Всего:	18/4	18/6		3	33	72/10	

4.4. Лабораторные работы / практические занятия

Практические занятия учебным планом не предусмотрены.

Лабораторные работы предусмотрены в объеме 18 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	4	РАЗДЕЛ 1 Примеры моделей, получаемых из фундаментальных законов природы.	ПЗ №1.Повторение сведений из различных курсов. Собственные числа и собственные вектора. ПЗ №2 Повторение основных положений линейной алгебры. Норма матрицы. Число обусловленности. Вычисление ошибки. ПЗ №3-4. Априорные оценки. Сравнение «точных » методов. Сравнение метода Гаусса и Крамера. ПЗ №5-6. Метод квадратного корня. Методы ортогонализации. Обращение клеточных матриц.	4/2
2	4	РАЗДЕЛ 2 Примеры физических задач приводящих к СЛАУ.	Возможность организации много потоковой обработки данных. ПЗ №7. Обзор точных методов решения СЛАУ. Собственные числа и вектора. ПЗ №8-9. Вычисление числа обусловленности тря трех диагональных матриц. ПЗ №10. Априорные оценки. Сравнение «точных » методов. Описание программы сравнения метода Гаусса и Крамера на языке Си++. ПЗ №11. Описание программы метода Тихонова	4/2
3	4	РАЗДЕЛ 3 Итерационные методы.	ПЗ №12-14. Метод Зейделя. ПЗ №15-18 Построение программы метода простых итераций и метода Зейделя.	4 / 2
4	4	РАЗДЕЛ 4 Численные методы решения задач для обыкновенных дифференциальных уравнений.	ПЗ №19-21. Обыкновенные дифференциальные уравнения и краевые условия для них. Метод прогонки. ПЗ №22-24. Фазовая плоскость. Особые точки.	4
5	4	РАЗДЕЛ 5 Численные методы решения задач для обыкновенных дифференциальных уравнений. Одношаговые методы.	ПЗ №25-26. Устойчивость. Неустойчивость в нелинейном случае. Разбор ситуации: Устойчивое решение, но выбран неустойчивый метод численного решения. ПЗ №27-28. ОДУ второго порядка с малым параметром при старшей производной.	2

4.5. Примерная тематика курсовых проектов (работ)

Курсовые проекты (работы) учебным планом не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Преподавание дисциплины «Прикладная математика» осуществляется в форме лекций и лабораторных работ.

Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью и на 70 % являются традиционными классически-лекционными (объяснительно-иллюстративные), и на 30 % с использованием компьютерных технологий.

Лабораторные работы организованы с использованием составления, отладки программ на языке СИ++. Часть времени занимает объяснение теории курса и ответы на вопросы, что выполняется в виде традиционных практических занятий (объяснительно-иллюстративное решение задач). Остальная часть времени, отведенного на выполнение лабораторной работы курса проводится с использованием компьютерных технологий, в том числе разбор и анализ конкретных ситуаций, электронный практикум (решение поставленных задач с помощью современной вычислительной техники и исследование моделей); технологий, основанных на коллективных способах обучения.

Самостоятельная работа студента организована с использованием традиционных видов работы . К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям.

Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 6 разделов, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (решение типовых простых задач, анализ конкретных ситуаций, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые решения простых типовых задач, решение простых задач с использованием бумажных носителей.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов
1	2	3	4	5
1	4	РАЗДЕЛ 1 Примеры моделей, получаемых из фундаментальных законов природы.	 Подготовка к входному контролю по приведенным ниже вопросам. Подготовка к практическому занятию № 2 Изучение учебной литературы из приведенных источников: [1]- [4] (введение), [7], [8]. Составление программы для первой домашней работы. Выполнение домашней контрольной работы 1: Решение СЛАУ, Вычисление собственных чисел и построение собственных векторов. Выполнение домашних заданий. 	12
2	4	РАЗДЕЛ 2 Примеры физических задач приводящих к СЛАУ.	 Подготовка к практическому занятию № Изучение учебной литературы из приведенных источников: Выполнение домашних заданий. 	10
3	4	РАЗДЕЛ 3 Итерационные методы.	 Подготовка к практическому занятию № Изучение учебной литературы из приведенных источников: [3], [2], [1], [8]. Выполнение домашних заданий. 	3
4	4	РАЗДЕЛ 4 Численные методы решения задач для обыкновенных дифференциальных уравнений.	 Подготовка к практическому занятию № Изучение учебной литературы из приведенных источников: [1],[3]. Выполнение домашней контрольной работы 2: Решение задачи Коши для линейного обыкновенного дифференциального уравнения. 	6
5	4	РАЗДЕЛ 5 Численные методы решения задач для обыкновенных дифференциальных уравнений. Одношаговые методы.	1. Подготовка отчетов по работам. 2. Изучение учебной литературы из приведенных источников: [10],[3].	1
6	4	РАЗДЕЛ 6 Особые точки при численных расчётах.	1. Изучение учебной литературы из приведенных источников: [10],[8].	1
	•		ВСЕГО:	33

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Устойчивость разностных схем	А.А.Самарский,	Изд. Либком. 386с., 2009	Все разделы
2	Численные методы.	Н.С. Бахвалов.	Изд. Бином 401 с., 2003	Все разделы
3	Решение задач и упражнения	Н.С. Бахвалов.	Изд. Дрофа, 2009	Все разделы
4	Численные методы. Учебное пособье для вузов.	Н.С.Бахвалов. Н.П.Жидков, Г.М. Кобельков	Изд. Лабораторя базовых знаний. 632., 2014	Все разделы
5	Численные методы	К.А. Волосов	МИИТ, 2009	Все разделы
6	Ведение в систему «Mathematica».	Е.М.Воробьев	М.Финансы и Статистика., 1989	Все разделы
7	Новые точные решения уравнений с частными производными параболического типа	К.А. Волосов	МИИТ, 2010	Все разделы
8	Некоторые аспекты вычислительной математики.	К.А.Волосов и др.	МИИТ, 2013	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
9	Численное решение уравнений с частными производными методом сеток.	А.С. Братусь, Ю.П. Власов, А.Д.Мышкис.	МИИТ, 1986	Все разделы
10	Численные методы для задач линейной	Ю.П.Власов, В.П.Посвянский	МИИТ, 0	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека.
- 4. Электронно-библиотечная система «Znanium.com»: http://znanium.com/.
- 5. Электронно-библиотечная система «КнигаФонд»: http://www.knigafund.ru/.
- 6. Электронно-библиотечная система «Университетская библиотека онлайн»: www.bibloclub.ru
- 7. Научная электронная библиотека (НЭБ): http://elibrary.ru/defaultx.asp
- 8. БД российских научных журналов на

Elibrary.ru(РУНЭБ):http://elibrary.ru/projects/subscription/rus titles open.asp

- 9. БД российских журналов East View: http://dlib.eastview.com
- 10. http://www.zeldortrans-jornal.ru/magazine/magazin.htm электронная библиотека журнала «Железнодорожный транспорт».
- 11. http://www.rzd-partner.ru/publications/rzd-partner/ электронная библиотека журнала «РЖД Партнер».
- 12. http://pult.gudok.ru/archive/ электронная библиотека журнала «Пульт управления».
- 13. Поисковые системы: Yandex, Google, Mail.жи.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой.

Для проведения практических занятий необходима специализированная аудитория с мультимедиа аппаратурой. Компьютер должен быть обеспечен стандартными лицензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже Microsoft Office 2007 (2013).

- 1. Операционная среда Windows;
- 2.Приложение MicrosoftOffice

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения аудиторных занятий и самостоятельной работы используются:

- 1. Рабочее место преподавателя.
- 2. Проведение лекций -презентаций, практических занятий-презентаций, использование слайдов, презентаций, видеофильмов по темам лекций в специализированных лекционных аудиториях.
- 3. Проведение практических и лабораторных занятий с использованием мультимедийного оборудования аудиторий университета. Видеофильмы по темам практических и лабораторных работ.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

бучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе. Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими бакалаврами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций: 1. Познавательно-обучающая; 2. Развивающая; 3.

Ориентирующе-направляющая; 4. Активизирующая; 5. Воспитательная; 6. Организующая; 7. Информационная.

Выполнение практических заданий служит важным связующим звеном между теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств.

Проведение практических занятий не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

При подготовке бакалавра важны не только серьезная теоретическая подготовка, знание основ надежности подвижного состава, но и умение ориентироваться в разнообразных практических ситуациях, ежедневно возникающих в его деятельности. Этому способствует форма обучения в виде практических занятий. Задачи практических занятий: закрепление и углубление знаний, полученных на лекциях и приобретенных в процессе самостоятельной работы с учебной литературой, формирование у обучающихся умений и навыков работы с исходными данными, научной литературой и специальными документами. Практическому занятию должно предшествовать ознакомление с лекцией на соответствующую тему и литературой, указанной в плане этих занятий. Самостоятельная работа может быть успешной при определенных условиях, которые необходимо организовать. Ее правильная организация, включающая технологии отбора целей, содержания, конструирования заданий и организацию контроля, систематичность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систематизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что- то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения.

Фонд оценочных средств являются составной частью учебно-методического обеспечения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Основные методические указания для обучающихся по дисциплине указаны в разделе основная и дополнительная литература.