МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Применение BIM-технологий в робототизированных системах

Направление подготовки: 15.04.06 Мехатроника и робототехника

Направленность (профиль): Роботы и робототехнические системы

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ) ID подписи: 6216

Подписал: заведующий кафедрой Неклюдов Алексей

Николаевич

Лата: 01.06.2024

1. Общие сведения о дисциплине (модуле).

Целями освоения дисциплины (модуля) являются:

- является формирование у специалистов системы компетенций, связанных с пониманием области BIM-технологий и их систем РТК;
- изучение тенденций развития новых направлений РТК для последующего применения при выполнении различных видов работ в профессиональной сфере деятельности, включая научно-исследовательские, проектные и др.

Задачами дисциплины (модуля) являются:

- изучение основных положений информационного моделирования;
- изучение методов создания информационной модели и использования ее для создания проектной документации;
- практическое освоение использования информационной модели для статического расчета;
- изучения компьютерных программных комплексов для создания информационной модели и использования ее в проектировании.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-8** Способен оптимизировать затраты на обеспечение деятельности производственных подразделений;
- **ОПК-9** Способен разрабатывать и осваивать новое технологическое оборудование;
- **ОПК-10** Способен разрабатывать методики контроля и обеспечения производственной и экологической безопасность на рабочих местах;
- ОПК-11 - Способен организовывать разработку и применение алгоритмов и современных цифровых программных методов расчетов и проектирования отдельных устройств и подсистем мехатронных робототехнических систем с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной вычислительной техники соответствии c техническим заданием, разрабатывать цифровые алгоритмы И программы управления робототехнических систем;
- **ПК-10** Готов к выполнению настройки, наладки, сопровождению эксплуатации оборудования мехатронных и робототехнических систем;

ПК-11 - Готов осуществлять контроль, обслуживание и обеспечение надежности и безопасности оборудования мехатронных и робототехнических систем.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

знать основные принципы и методологии ВІМ;

знать программное обеспечение для ВІМ-моделирования и его интеграцию с робототехническими системами;

знать стандарты и форматы обмена данными в ВІМ-технологиях;

знать методы применения ВІМ для управления роботизированными комплексами;

знать принципы планирования роботизированных процессов на основе ВІМ-моделей;

знать требования к данным для интеграции BIM и робототехнических систем.

Уметь:

уметь создавать и редактировать ВІМ-модели для задач роботизации;

уметь использовать BIM-данные для программирования траекторий роботов;

уметь интегрировать ВІМ-модели с системами управления робототехническими комплексами;

уметь планировать роботизированные технологические процессы на основе BIM-моделей;

уметь анализировать и преобразовывать ВІМ-данные для задач автоматизации;

уметь проводить виртуальное моделирование роботизированных процессов в ВІМ-среде.

Владеть:

владеть навыками работы с ВІМ-программным обеспечением;

владеть методами интеграции BIM-моделей с робототехническими системами;

владеть технологиями планирования роботизированных процессов на основе BIM;

владеть навыками преобразования ВІМ-данных для управления роботами;

владеть методами виртуального моделирования и отладки роботизированных систем в BIM-среде;

владеть инструментами анализа и контроля качества роботизированных процессов с использованием BIM-технологий.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Two was few we conserved	Количество часов	
Тип учебных занятий		Семестр №4
Контактная работа при проведении учебных занятий (всего):		28
В том числе:		
Занятия лекционного типа	14	14
Занятия семинарского типа	14	14

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 116 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

$N_{\overline{0}}$	Тематика лекционных занятий / краткое содержание				
Π/Π	тематика лекционных занятии / краткое содержание				
1	Введение в САD/САМ/САЕ для роботизированных систем.				
	Рассматриваемые вопросы:				
	- САД-системы;				
	- САЕ-системы;				
	- САМ-системы;				
	- EDA-системы.				
2 Проектирование роботизированной ячейки (CAD-системы).					
	Рассматриваемые вопросы:				
	- разработка проекта роботизированной ячейки;				
	- генерация управляющей программы.				
3	Расчет технологической оснастки роботизированных ячеек (САЕ-системы).				
	Рассматриваемые вопросы:				
	- виды технологической оснастки для промышленного робота;				
	- проектирование технологической оснастки для промышленного робота.				
4	Изготовление технологической оснастки роботизированных ячеек (САМ-системы).				
	Рассматриваемые вопросы:				
	- проект изготовления технологической оснастки;				
	- генерация управляющей программы для изготовления технологической оснастки.				
5	Моделирование работы роботизированных систем.				
	Рассматриваыемые вопросы:				
	- разработка проекта роботизированной ячейки в симуляционной среде;				
	- проверка на досягаемость и коллизии.				
6	Программирование промышленных роботов на языке KRL.				
	Рассматриваемые вопросы:				
	- основы языка программирования KRL;				
	- применение программных конструкций KRL.				
7	Техническое обслуживание роботизированной ячейки.				
	Рассматриваемые вопросы:				
	- виды и объемы работ при техническом обслуживании манипулятора робота;				
	- виды и объемы работ при техническом обслуживании шкафа управления робота.				
8	Ремонт и утилизация роботизированных ячеек.				
	Рассматриваемые вопросы:				
	- система ремонта промышленных роботов.				

4.2. Занятия семинарского типа.

Практические занятия

№	Тематика практических занятий/краткое содержание			
п/п				
1	Проектирование роботизированных ячеек.			
	В результате практического задания рассматриваются варианты эскизной разработки			
	роботизированных ячеек в САД-системах.			
2	Проектирование технологической оснастки роботизированной ячейки.			
	В результате практического задания рассматриваются варианты проектирования технологической			
	оснастки.			
3	Расчет конструкции технологической оснастки роботизированной ячейки.			
	В результате практического задания рассматриваются виды расчета технологической оснастки.			

№	To vozvyvo wa overvyvo ovyvy povozny i /more o o o vozvyvy				
Π/Π	Тематика практических занятий/краткое содержание				
4	Проектирование электрических схем роботизированных ячеек.				
	В результате практического задания рассматриваются способы разработки электрических цепей				
	безопасности и электрических схем подключения роботизированной ячейки в EDA-системах.				
5	Проектирование печатной платы электронного устройства.				
	В результате практического задания рассматирваются:				
	- разработка принципиальной электрической схемы электронного устройства;				
	- трассировка печатной платы электронного устройства;				
	- подготовка файлов для производства.				
6	Проектирование пневматических схем роботизированных ячеек.				
	В результате практического задания рассматриваются:				
	- разработка принципиальных пневматических схем;				
	- выбор пневмоаппаратов.				
7	Моделирование работы роботизированных ячеек.				
	В результате практического задания рассматриваются варианты моделирования роботизированных				
	ячеек.				

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Текущая подготовка к практическим занятиям
2	Подготовка к промежуточной аттестации.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№	Библиографическое описание	Место доступа	
Π/Π	виолиографическое описание		
1	Проектирование инженерных систем на основе	https://e.lanbook.com/book/386444	
	BIM-модели в Autodesk Revit MEP : учебное	(дата обращения: 21.05.2024)	
	пособие для вузов / И. И. Суханова, С. В.	Текст: электронный.	
	Федоров, Ю. В. Столбихин, К. О. Суханов 3-е		
	изд., стер Санкт-Петербург : Лань, 2024 148 с.		
	- ISBN 978-5-507-47536-0.		
2	Григорьев, В. Г. Взаимодействие и совместная	https://e.lanbook.com/book/325340	
	работа участников проектной группы на всех	(дата обращения: 21.05.2024)	
	этапах ВІМ-проекта : учебное пособие / В. Г.	Текст: электронный.	
	Григорьев, С. В. Тепикин, А. В. Показеев		
	Иркутск: ИРНИТУ, 2021 148 с.		
3	Губанов, С. Г. ВІМ-технологии. Основы	https://e.lanbook.com/book/305456	
	моделирования : методические указания / С. Г.	(дата обращения: 21.05.2024)	
	Губанов Москва : МИСИС, 2022 152 с.	Текст: электронный.	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/)

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru)

Образовательная платформа «Юрайт» (https://urait.ru/)

Общие информационные, справочные и поисковые «Консультант Плюс» (http://www.consultant.ru/)

«Гарант» (http://www.garant.ru/)

Главная книга (https://glavkniga.ru/)

Электронно-библиотечная система издательства (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

WorkVisual; RoboDK; CoppeliaSim; Logo!Soft Comfort; DesignSpark Electrical; KiCad; CoDeSys; Компас-3D; OnShape; Ansys Workbench Student.

- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Рабочее место преподавателя с персональным компьютером, подключённым к сети INTERNET.
- 2. Программное обеспечение для создания программ и электрических схем.
- 3. Специализированная лекционная аудитория с мультимедиа аппаратурой.
 - 4. Специализированная аудитория для выполнения практических работ.
 - 5. Промышленные роботы.
 - 9. Форма промежуточной аттестации:

Зачет в 4 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

А.В. Мишин

Согласовано:

Заведующий кафедрой НТТС

А.Н. Неклюдов

Председатель учебно-методической

комиссии С.В. Володин