МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы бакалавриата по направлению подготовки 15.03.06 Мехатроника и робототехника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Проектирование машиностроительных производств

Направление подготовки: 15.03.06 Мехатроника и робототехника

Направленность (профиль): Автоматизация и роботизация

технологических процессов

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 610876

Подписал: заведующий кафедрой Григорьев Павел

Александрович

Дата: 01.06.2025

1. Общие сведения о дисциплине (модуле).

Целью изучения дисциплины (модуля) является:

- формирование знаний о принципах проектирования современных машиностроительных производств;
- развитие умений проектировать и оптимизировать производственные системы с учетом требований эффективности, качества и экономической целесообразности;
- подготовка специалистов, способных разрабатывать и внедрять инновационные решения в области организации машиностроительных производств.

Задачами дисциплины (модуля) являются:

- изучение основ проектирования машиностроительных производств, включая технологические, планировочные и организационные решения;
- освоение методов расчета производственных мощностей, такта выпуска продукции и загрузки оборудования;
- разработка технологических схем и планировки цехов с учетом требований эргономики, логистики и безопасности;
- изучение современных тенденций автоматизации и цифровизации производств;
- формирование навыков анализа и оптимизации производственных процессов с использованием методов Lean Manufacturing и TPM;
- приобретение опыта работы с нормативной документацией и программными средствами проектирования.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-13** Способен применять методы контроля качества изделий и объектов в сфере профессиональной деятельности.;
- **ОПК-14** Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.;
- **ПК-2** Способен производить комплексную настройку мехатронных и робототехнических систем, используя программное обеспечение котороллеров и управляющих ЭВМ, их систем управления .

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- основные принципы проектирования машиностроительных производств;
- нормативно-правовую базу в области промышленного проектирования;
- методы расчета производственных мощностей и загрузки оборудования;
 - технологические процессы в машиностроении;
 - принципы организации производственных потоков;
 - методы автоматизации и цифровизации производств.

Уметь:

- разрабатывать технологические схемы и планировки цехов;
- проводить расчеты производственных мощностей и потребности в оборудовании;
 - оптимизировать производственные процессы;
- выбирать и обосновывать выбор оборудования (станки, роботы, транспортные системы).

Владеть:

- навыками работы с нормативной документацией;
- методами проектирования гибких и роботизированных производственных систем;
 - приемами анализа эффективности производства.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 3 з.е. (108 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тин жабан уу занатий	Количество часов	
Тип учебных занятий		Семестр №7
Контактная работа при проведении учебных занятий (всего):	64	64
В том числе:		
Занятия лекционного типа	32	32
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 44 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание		
Π/Π	тематика лекционных запитии / краткое содержание		
1	Введение в проектирование машиностроительных производств		
	Рассматриваемые вопросы:		
	- Основные понятия и задачи проектирования;		
	- Особенности автоматизированных производств;		
	- Современные тенденции в роботизации;		
	- Нормативная база проектирования.		
2	Структура и организация машиностроительного производства		
	Рассматриваемые вопросы:		
	- Производственные подразделения предприятия;		
	- Принципы специализации и кооперирования;		
	- Производственные и технологические потоки;		
	- Влияние автоматизации на структуру предприятия.		
3	Производственные и технологические процессы в машиностроении		
	Рассматриваемые вопросы:		
	- Виды технологических процессов;		
	- Автоматизированные технологические линии;		
	- Гибкие производственные системы;		
	- Интеграция мехатронных систем.		
4	Методы проектирования машиностроительных производств		
	Рассматриваемые вопросы:		
	- Этапы проектирования;		
	- CAD/CAM/CAE-системы;		
	- Цифровые двойники производств;		
	- Оптимизация процессов.		
5	Автоматизация и роботизация в машиностроении		
	Рассматриваемые вопросы:		
	- Промышленные роботы и их применение;		

No				
п/п	Тематика лекционных занятий / краткое содержание			
	- Автоматизированные системы управления;			
	- IoT и Industry 4.0;			
	- Кейсы внедрения.			
6	Проектирование производственных участков и цехов			
	Рассматриваемые вопросы:			
	- Планировка оборудования;			
	- Организация материальных потоков;			
	- Требования к автоматизированным участкам;			
	- Эргономика и безопасность.			
7	Гибкие производственные системы			
	Рассматриваемые вопросы:			
	- Принципы построения ГПС;			
	- Модульные роботизированные ячейки;			
	- Управление ГПС;			
	- Примеры внедрения.			
8	Логистика и складирование в автоматизированном производстве			
	Рассматриваемые вопросы:			
	- Автоматизированные системы складирования;			
	- Роботизированные транспортные системы;			
	- Интеграция с производством;			
	- Оптимизация логистики.			
9	Контроль качества в автоматизированном производстве			
	Рассматриваемые вопросы:			
	- Автоматизированные системы контроля;			
	- Встроенный контроль в линиях;			
	- Статистические методы;			
10	- Обратная связь в управлении.			
10	Проектирование роботизированных сборочных комплексов			
	Рассматриваемые вопросы:			
	Особенности автоматизированной сборки;Компоновка роботизированных ячеек;			
	- компоновка росотизированных ячеек, - Системы позиционирования и фиксации;			
	- Системы позиционирования и фиксации, - Контроль качества сборки.			
11	Интеграция мехатронных систем в производство			
11	Рассматриваемые вопросы:			
	- Принципы построения мехатронных модулей;			
	- Принципы постросния мехатронных модулей, - Сенсорные системы в производстве;			
	- Программное обеспечение управления;			
	- Примеры успешной интеграции.			
12	Проектирование автоматизированных линий механообработки			
	Рассматриваемые вопросы:			
	- Особенности автоматизированной обработки;			
	- Компоновка обрабатывающих центров;			
	- Системы инструментального обеспечения;			
	- Контроль точности обработки.			
13	Энергоэффективность и экология производств			
	Рассматриваемые вопросы:			
	- Энергосберегающие технологии;			
	- Системы рекуперации энергии;			

No	T		
Π/Π	Тематика лекционных занятий / краткое содержание		
	- Экологические стандарты;		
	- Устойчивое развитие.		
14	Цифровые технологии в проектировании производств		
	Рассматриваемые вопросы:		
	- Виртуальное проектирование;		
	- Имитационное моделирование;		
	- Большие данные и AI;		
	- Киберфизические системы.		
15	Проектирование человеко-машинных интерфейсов в производстве		
	Рассматриваемые вопросы:		
	- Эргономика рабочих мест;		
	- Системы визуализации данных;		
	- Безопасность взаимодействия;		
	- Кейсы реализации.		
16	Особенности проектирования автоматизированных производств под конкретные		
	изделия		
	Рассматриваемые вопросы:		
	- Анализ технического задания;		
	- Выбор степени автоматизации;		
	- Расчет экономической эффективности;		
	- Подготовка технической документации.		

4.2. Занятия семинарского типа.

Практические занятия

$N_{\underline{0}}$	T		
п/п	Тематика практических занятий/краткое содержание		
1	Анализ структуры машиностроительного предприятия		
	В результате выполнения практического занятия студенты научатся анализировать		
	организационную структуру предприятия, выделять основные и вспомогательные производства,		
	составлять схемы производственных связей.		
2	Разработка технологического маршрута обработки детали		
	В результате выполнения практического занятия студенты освоят методику составления		
	технологических маршругов, научатся выбирать оборудование и определять последовательность		
	операций для типовой детали.		
3	Расчет производственной мощности участка		
	В результате выполнения практического занятия студенты приобретут навыки расчета		
	производственной мощности, научатся определять пропускную способность оборудования и		
	составлять баланс производственных мощностей.		
4	Разработка схемы автоматизированной линии		
	В результате выполнения практического занятия студенты научатся проектировать схемы		
	автоматизированных линий, подбирать промышленных роботов и разрабатывать		
	последовательность операций.		
5	Моделирование работы роботизированной ячейки		
	В результате выполнения практического занятия студенты освоят принципы моделирования работы		
	роботизированной ячейки в специализированном ПО, научатся анализировать циклограммы		
	работы.		

No	T		
Π/Π	Тематика практических занятий/краткое содержание		
6	Расчет потребности в материалах и комплектующих		
	В результате выполнения практического занятия студенты научатся рассчитывать потребность в		
	материалах, составлять спецификации и формировать заявки на поставку комплектующих.		
7	Оптимизация производственного потока		
	В результате выполнения практического занятия студенты освоят методы анализа		
	производственных потоков, научатся выявлять узкие места и предлагать решения по их		
	устранению.		
8	Разработка системы контроля качества		
	В результате выполнения практического занятия студенты научатся проектировать системы		
	контроля качества, разрабатывать карты технического контроля и выбирать средства измерений.		
9	Расчет экономической эффективности автоматизации		
	В результате выполнения практического занятия студенты научатся рассчитывать показатели		
	экономической эффективности автоматизации, определять сроки окупаемости оборудования.		
10	Анализ надежности автоматизированной линии		
	В результате выполнения практического занятия студенты научатся рассчитывать показатели		
	надежности технологического оборудования, анализировать причины отказов.		
11	Разработка проекта модернизации участка		
	В результате выполнения практического занятия студенты научатся анализировать существующее		
	производство, разрабатывать предложения по модернизации и составлять технико-экономическое		
	обоснование.		
12	Оформление проектной документации		
	В результате выполнения практического занятия студенты освоят требования к оформлению		
	проектной документации, научатся составлять пояснительные записки и технические отчеты.		

4.3. Самостоятельная работа обучающихся.

№ π/π	Вид самостоятельной работы
	Изучение дополнительной литературы.
2	Подготовка к практическим занятиям.
3	Выполнение курсовой работы.
4	Подготовка к промежуточной аттестации.
5	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

- 1. Проектирование автоматизированного участка токарной обработки валов с применением токарных станков с ЧПУ и роботизированной загрузки
- 2. Проектирование автоматизированного участка фрезерной обработки корпусных деталей с применением обрабатывающих центров и паллетной системы
- 3. Проектирование автоматизированного участка шлифовальной обработки плоских поверхностей с применением плоскошлифовальных станков и конвейерной системы

- 4. Проектирование автоматизированного участка зубообработки шестерен с применением зубофрезерных станков и роботизированного комплекса
- 5. Проектирование автоматизированного участка сварки корпусных конструкций с применением сварочных роботов и позиционеров
- 6. Проектирование автоматизированного участка сборки редукторов с применением сборочных конвейеров и коллаборативных роботов
- 7. Проектирование автоматизированного участка литья под давлением пластмассовых деталей с применением термопластавтоматов и роботовзагрузчиков
- 8. Проектирование автоматизированного участка штамповки листовых деталей с применением прессов и автоматической подачи заготовок
- 9. Проектирование автоматизированного участка термической обработки деталей с применением печей и конвейерной системы
- 10. Проектирование автоматизированного участка гальванических покрытий с применением гальванических линий и роботизированной загрузки
- 11. Проектирование автоматизированного участка лазерной резки листового металла с применением лазерных комплексов и системы удаления отходов
- 12. Проектирование автоматизированного участка электроэрозионной обработки пресс-форм с применением копировально-прошивных станков и ЧПУ
- 13. Проектирование автоматизированного участка контроля геометрии деталей с применением координатно-измерительных машин и системы машинного зрения
- 14. Проектирование автоматизированного участка упаковки готовой продукции с применением упаковочных автоматов и роботов-паллетизаторов
- 15. Проектирование автоматизированного участка аддитивного производства металлических деталей с применением установок селективного лазерного спекания
- 16. Проектирование автоматизированного участка механообработки турбинных лопаток с применением 5-осевых обрабатывающих центров
- 17. Проектирование автоматизированного участка сборки гидравлических агрегатов с применением сборочных конвейеров и контрольно-испытательных стендов
- 18. Проектирование автоматизированного участка восстановления деталей с применением наплавочных комплексов и механизированной обработки

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Проектирование технологических процессов машиностроительных производств: учебник / В. А. Тимирязев, А. Г. Схиртладзе, Н. П. Солнышкин, С. И. Дмитриев. — Санкт-Петербург: Лань, 2022. — 384 с. — ISBN 978-5-8114-1629-5.	URL: https://e.lanbook.com/book/211652 (дата обращения: 10.05.2025). — Текст: электронный.
2	Смирнов, А. М. Организационно-технологическое проектирование участков и цехов : учебное пособие / А. М. Смирнов, Е. Н. Сосенушкин. — 2-е изд., стер. — Санкт-Петербург : Лань, 2022. — 228 с. — ISBN 978-5-8114-2201-2.	URL: https://e.lanbook.com/book/209930 (дата обращения: 10.05.2025). — Текст: электронный.
3	Вороненко, В. П. Проектирование машиностроительного производства: учебник / В. П. Вороненко, М. С. Чепчуров, А. Г. Схиртладзе; под редакцией В. П. Вороненко. — 2-е изд., стер. — Санкт-Петербург: Лань, 2022. — 416 с. — ISBN 978-5-8114-4519-6.	URL: https://e.lanbook.com/book/206783 (дата обращения: 10.05.2025). — Текст: электронный.
4	Зубарев, Ю. М. Технология автоматизированного производства / Ю. М. Зубарев, А. В. Приемышев. — Санкт-Петербург: Лань, 2023. — 216 с. — ISBN 978-5-507-46188-2.	URL: https://e.lanbook.com/book/327350 (дата обращения: 10.05.2025). — Текст: электронный.

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Официальный сайт РУТ (МИИТ) (https://www.miit.ru/);

Научно-техническая библиотека РУТ (МИИТ) (http:/library.miit.ru);

Образовательная платформа «Юрайт» (https://urait.ru/);

Общие информационные, справочные и поисковые системы «Консультант Плюс», «Гарант»;

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/);

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/).

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Microsoft Internet Explorer (или другой браузер); Операционная система Microsoft Windows; Microsoft Office; T-Flex.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

9. Форма промежуточной аттестации:

Курсовая работа в 7 семестре. Экзамен в 7 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Наземные транспортнотехнологические средства»

П.А. Григорьев

Согласовано:

Заведующий кафедрой НТТС

П.А. Григорьев

Председатель учебно-методической

комиссии

С.В. Володин