МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

УТВЕРЖДАЮ:

Директор ИПСС

23 января 2020 г.

Кафедра «Мосты и тоннели»

Автор Курбацкий Евгений Николаевич, д.т.н., доцент

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Проектирование мостов в зонах повышенной сейсмичности

Специальность: 23.05.06 – Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Мосты

Квалификация выпускника: Инженер путей сообщения

Форма обучения: очная

Год начала подготовки 2019

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 5 25 июня 2019 г.

Председатель учебно-методической

комиссии

М.Ф. Гуськова

Одобрено на заседании кафедры

Протокол № 15 24 июня 2019 г.

Заведующий кафедрой

·

А.А. Пискунов

Рабочая программа учебной дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 941027

Подписал: Заведующий кафедрой Пискунов Александр

Апексеевич

Дата: 24.06.2019

1. ЦЕЛИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями изучения дисциплины «Моделирование и расчёт подземных сооружений на сейсмические воздействия» являются получение теоретических знаний в области тоннелестроения, освоение методов расчёта подземных сооружений, проектируемых для районов с повышенной сейсмической активностью.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Учебная дисциплина "Проектирование мостов в зонах повышенной сейсмичности" относится к блоку 1 "Дисциплины (модули)" и входит в его вариативную часть.

2.1. Наименования предшествующих дисциплин

Для изучения данной дисциплины необходимы следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

2.1.1. Динамика и устойчивость транспортных сооружений:

Знания: уравнения движения для упругой системы с одной, несколькими и бесконечным количеством степеней свободы

Умения: составлять уравнения движения для разнообразных видов расчетных схем, как в линейной, так и в нелинейной постановке; оценивать точность полученных решений и области возможного использования упрощенных математических моделей; уметь составлять уравнения для анализа устойчивости равновесия строительных и транспортных сооружений; анализировать устойчивость стержневых, пластинчатых и комбинированных систем; создавать расчетные схемы по методу конечных элементов для анализа устойчивости строительных систем

Навыки: навыками определения форм и частот собственных колебаний систем со многими динамическими степенями свободы

2.1.2. Инженерная геодезия и геоинформатика:

Знания: состав и назначение инженерно-геодезических изысканий, их место в системе инженерных изысканий транспортных путей и сооружений.

Умения: умело использовать особенности и преимущества, последних образцов измерительной и вычислительной техники для целей совершенствования и увеличения точности получения геодезической информации и геоинформационных технологий.

Навыки: основными способами поверки и юстировки геодезических приборов;методами оценки точности результатов инженерно-геодезических измерений.

2.1.3. Инженерная геология:

Знания: строение вселенной, исторические циклы развития Земли, основные химические элементы строения земной коры, процессы внутренней(эндогенной) и внешней (экзогенной) динамик, влияющих на современный облик рельефа земной поверхности.

Умения: уметь

Навыки: методами временной или постоянной защиты инженерных сооружений от неблагоприятных инженерно-геологических и гидрогеологических условий.

2.1.4. Механика грунтов:

Знания: разновидности инженерно-геологических работ

Умения: применять схемы разрушения грунтовых оснований, сложенных разными грунтами

Навыки: методами расчета и оценки прочности грунтов на основе законов теории упругости

2.1.5. Строительная механика:

Знания: методы образования стержневых систем и способы проверки их геометрической неизменяемости. Знать основные методы расчета статически определимых систем

Умения: рассчитывать балочные, простейшие рамные и арочные системы при действии неподвижной и подвижной нагрузки

Навыки: навыками анализа результатов расчета простейших стержневых систем

2.1.6. Теоретическая механика:

Знания: современную физическую картину мира и эволюции Вселенной, пространственно-временные закономерности, строение вещества

Умения: пополнять знания о современной физической картине мира и эволюции Вселенной, пространственно-временных закономерностях, строении вещества

Навыки: способностью применения методов математического анализа и моделирования к решению практических задач

2.1.7. Теория упругости:

Знания: статическую, геометрическую и физическую системы уравнений ТУ.

Умения: формулировать допущения и гипотезы, положенные в основу расчета реальных элементов конструкций.

Навыки: приемами расчета реальных элементов конструкций.

2.2. Наименование последующих дисциплин

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины студент должен:

№ п/п	Код и название компетенции	Ожидаемые результаты
1	ПКС-14 способность выполнять математическое моделирование объектов и процессов с применением автоматизированного проектирования, исследовать и анализировать процессы,	ПКС-14.1 Уметь всесторонне анализировать и представлять результаты научных исследований. ПКС-14.2 Знать методы работы с пакетами прикладных программ автоматизированных исследований строительных объектов и процессов.
	происходящие в мостовых конструкциях и повышать надежность эксплуатируемых мостовых сооружений.	

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ И АКАДЕМИЧЕСКИХ ЧАСАХ

4.1. Общая трудоемкость дисциплины составляет:

3 зачетные единицы (108 ак. ч.).

4.2. Распределение объема учебной дисциплины на контактную работу с преподавателем и самостоятельную работу обучающихся

	Количеств	о часов
Вид учебной работы	Всего по учебному плану	Семестр 9
Контактная работа	68	68,15
Аудиторные занятия (всего):	68	68
В том числе:		
лекции (Л)	34	34
практические (ПЗ) и семинарские (С)	34	34
Самостоятельная работа (всего)	13	13
Экзамен (при наличии)	27	27
ОБЩАЯ трудоемкость дисциплины, часы:	108	108
ОБЩАЯ трудоемкость дисциплины, зач.ед.:	3.0	3.0
Текущий контроль успеваемости (количество и вид текущего контроля)	ТК	ТК
Виды промежуточной аттестации (экзамен, зачет)	Экзамен	Экзамен

4.3. Содержание дисциплины (модуля), структурированное по темам (разделам)

				Виды у	:/	Формы текущего			
№ π/π	Семестр	Тема (раздел) учебной дисциплины	Л	JIP	ПЗ/ТП	KCP	đ	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
1	9	Раздел 1 Анализ разрушений транспортных сооружений при землетрясениях. Оценка сейсмического риска	19		22			41	
2	9	Тема 1.1 Природа землетрясений. Основные термины и понятия. Классификация землетрясений. Шкалы интенсивностей землетрясений.	14		18			32	
3	9	Тема 1.2 Типичные повреждения и разрушения сооружений при сейсмических воздействиях.	2					2	
4	9	Тема 1.3 Определение сейсмичности района и строительной площадки. Параметры и характеристики, определяющие исходное сейсмическое воздействие.	1		4			5	
5	9	Тема 1.4 Типичные повреждения и разрушения сооружений при сейсмических воздействиях.	2					2	
6	9	Раздел 2 Простейшие динамические модели. Концепция спектров максимальных реакций	6		4			10	

			Виды учебной деятельности в часах/ в том числе интерактивной форме					Формы текущего	
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Л	ЛР	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
7	9	Тема 2.1 Системы с одной степенью свободы. Математические модели. Основные свойства.	2					2	
8	9	Тема 2.2 Методы построения спектров. Спектры Фурье сейсмических воздействий.	2					2	ТК, Устный опрос
9	9	Тема 2.3 Спектры реакций Ньюмарка Холла. Спектры Ньюмарка Холла и спектры, используемые в нормах различных стран.	1					1	
10	9	Тема 2.4 Плоские волны напряжений в упругих средах. Продольные волны. Поперечные волны. Поверхностные волны Рэлея и Лява.	1		4			5	
11	9	Раздел 3 Расчёт подземных сооружений на сейсмические воздействия.	6		4		10	20	
12	9	Тема 3.1 Особенности взаимодействия тоннельных обделок с грунтовым массивом при землетрясениях. Модели для расчёта тоннелей расположенных в жёстких грунтах	1					1	
13	9	Тема 3.2 Взаимодействие обделки с грунтовым массивом. Особенности расчёта. Математические модели.	1					1	
14	9	Тема 3.3 Метод конечных	2					2	

			Виды учебной деятельности в часах/ в том числе интерактивной форме						Формы текущего
№ п/п	Семестр	Тема (раздел) учебной дисциплины	Iſ	JIP	ПЗ/ТП	KCP	CP	Всего	контроля успеваемости и промежу- точной аттестации
1	2	3	4	5	6	7	8	9	10
		элементов. Определение параметров конечных элементов и параметров границ среды.							
15	9	Тема 3.4 Типы сейсмоизолирующих устройств. Математические модели. Примеры использования сейсмоизолирующих и демпфирующих устройств в тоннелестроении.	1					1	
16	9	Тема 3.5 Оценка напряжённо деформированного состояния элементов обделки при воздействии продольных, поперечных и поверхностных волн.	1		4			5	
17	9	Раздел 4 Нормативные требования при проектировании тоннелей в сейсмических районах.	3		4		3	10	
18	9	Тема 4.1 Расчётная сейсмичность. Требования к конструкции обделок.	1					1	, Устный опрос
19	9	Тема 4.2 Обследование тоннелей после землетрясений. Восстановительные и ремонтные работы.	1		4			5	
20	9	Тема 4.3 Цель сейсмометрической службы. Аппаратура и методы обработки информации. Экзамен	1					27	Экзамен
<u> </u>	<u> </u>	Экзамен		<u> </u>		l	l	41	JNJAMUH

				Виды у	Формы				
				в том числе интерактивной форме					текущего
№	стр	Тема (раздел)							контроля
п/п	емес	учебной							успеваемости и
11/11	Ce	дисциплины			E			2	промежу-
				JIP		CF.	G G	Всег	точной
			П	П	П	K	0	В	аттестации
1	2	3	4	5	6	7	8	9	10
22		Всего:	34		34		13	108	

4.4. Лабораторные работы / практические занятия

Лабораторные работы учебным планом не предусмотрены.

Практические занятия предусмотрены в объеме 34 ак. ч.

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Наименование занятий	Всего ча- сов/ из них часов в интерак- тивной форме
1	2	3	4	5
1	9	РАЗДЕЛ 1 Анализ разрушений транспортных сооружений при землетрясениях. Оценка сейсмического риска	Природа землетрясений. Основные термины и понятия. Классификация землетрясений. Шкалы интенсивностей землетрясений.	18
2	9	РАЗДЕЛ 1 Анализ разрушений транспортных сооружений при землетрясениях. Оценка сейсмического риска	Определение сейсмичности района и строительной площадки. Параметры и характеристики, определяющие исходное сейсмическое воздействие.	4
3	9	РАЗДЕЛ 2 Простейшие динамические модели. Концепция спектров максимальных реакций	Плоские волны напряжений в упругих средах. Продольные волны. Поперечные волны. Поверхностные волны Рэлея и Лява.	4
4	9	РАЗДЕЛ 3 Расчёт подземных сооружений на сейсмические воздействия.	Оценка напряжённо деформированного состояния элементов обделки при воздействии продольных, поперечных и поверхностных волн.	4
5	9	РАЗДЕЛ 4 Нормативные требования при проектировании тоннелей в сейсмических районах.	Обследование тоннелей после землетрясений. Восстановительные и ремонтные работы. ВСЕГО:	34/0

4.5. Примерная тематика курсовых проектов (работ)

Курсовые работы (проекты) не предусмотрены.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Для обеспечения качественного образовательного процесса по данной дисциплине применяются следующие образовательные технологии:традиционные: лекции, семинарские занятия, практические занятия, диспут.интерактивные: вебинары (электронные семинары), чат, форумы, интернетконференции;самостоятельная работа студентов.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	№ семестра	Тема (раздел) учебной дисциплины	Вид самостоятельной работы студента. Перечень учебно-методического обеспечения для самостоятельной работы	Всего часов		
1	2	3	4	5		
1	9	РАЗДЕЛ 3 Расчёт подземных сооружений на сейсмические воздействия.	Работа с основной и дополнительной литературой и интернетисточниками	10		
2	9	РАЗДЕЛ 4 Нормативные требования при проектировании тоннелей в сейсмических районах.	Работа с основной и дополнительной литературой и интернетисточниками	3		
	ВСЕГО: 13					

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1. Основная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
1	Колебания в инженерном деле	Тимошенко, С.П	М.: Наука , 1967	Все разделы
2	Строительная механика. Динамика и устойчивость упругих систем.	Александров А.В.Потапов В.Д.Зылёв В.Б.	Москва «Высшая школа», 2008	Все разделы
3	Сейсмостойкость транспортных тоннелей	Дорман И.Я.	М.:Транспорт, 1986	Все разделы
4	Свод правил СП 14.13330. 2011 Строительство в сейсмических районах. Актуализированная редакция СНиП II781	Коллектив авторов	(МИНРЕГИОН РОССИИ) МОСКВА , 2012	Все разделы

7.2. Дополнительная литература

№ п/п	Наименование	Автор (ы)	Год и место издания Место доступа	Используется при изучении разделов, номера страниц
5	Основы сейсмостойкого строительства	Н. Ньюмарк, Э.Розенблют	Москва Стройиздат, 1980	Все разделы
6	Теория упругости Региональная экономика и управление: учебное пособие	Тимошенко, С.ПГудьер Дж.	М.: Наука , 1979	Все разделы
7	EN 1998 Еврокод 8: Проектирование сейсмостойких сооружений Часть 2 Мосты		BS EN 19982:2005+A1:2009, 2009	Все разделы
8	Dynamic of StructuresTheory and Applications to Earthquake engineering	Anil K Chopra	Person Education Inc, New Jersey, 2007	Все разделы
9	Сейсмоизолирующие устройства для мостов	Курбацкий Е.Н.	Москва Транспорт , 2010	Все разделы

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", НЕОБХОДИМЫЕ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://library.miit.ru/ электронно-библиотечная система Научно-технической библиотеки МИИТ.
- 2. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека.
- 4. Поисковые системы: Yandex, Google, Mail.
- 5. Журнал "МЕТРО"

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ,

ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Требования к аудиториям (помещениям, кабинетам) для проведения занятий с указанием соответствующего оснащения

Аудитория для проведения занятий по дисциплине «Теория организации» должна быть оснащена компьютером и мультимедийным проектором. Требования к программному обеспечению при прохождении учебной дисциплины Haличиe Microsoft Office.

10. ОПИСАНИЕ МАТЕРИАЛЬНО ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Для проведения лекционных занятий необходима специализированная лекционная аудитория с мультимедиа аппаратурой и интерактивной доской.

Для проведения практических занятий необходимы компьютеры с рабочими местами в компьютерном классе. Компьютеры должны быть обеспечены стандартными лицензионными программными продуктами и обязательно программным продуктом Microsoft Office не ниже 2007.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Обучающимся необходимо помнить, что качество полученного образования в немалой степени зависит от активной роли самого обучающегося в учебном процессе.

Обучающийся должен быть нацелен на максимальное усвоение подаваемого лектором материала, после лекции и во время специально организуемых индивидуальных встреч он может задать лектору интересующие его вопросы.

Лекционные занятия составляют основу теоретического обучения и должны давать систематизированные основы знаний по дисциплине, раскрывать состояние и перспективы развития соответствующей области науки, концентрировать внимание обучающихся на наиболее сложных и узловых вопросах, стимулировать их активную познавательную деятельность и способствовать формированию творческого мышления. Главная задача лекционного курса — сформировать у обучающихся системное представление об изучаемом предмете, обеспечить усвоение будущими специалистами основополагающего учебного материала, принципов и закономерностей развития соответствующей научно-практической области, а также методов применения полученных знаний, умений и навыков.

Основные функции лекций: 1. Познавательно-обучающая; 2. Развивающая; 3. Ориентирующе-направляющая; 4. Активизирующая; 5. Воспитательная; 6. Организующая; 7. информационная.

Выполнение практических заданий служит важным связующим звеном между теоретическим освоением данной дисциплины и применением ее положений на практике. Они способствуют развитию самостоятельности обучающихся, более активному освоению учебного материала, являются важной предпосылкой формирования профессиональных качеств будущих специалистов.

Проведение практических занятий не сводится только к органическому дополнению лекционных курсов и самостоятельной работы обучающихся. Их вместе с тем следует рассматривать как важное средство проверки усвоения обучающимися тех или иных положений, даваемых на лекции, а также рекомендуемой для изучения литературы; как форма текущего контроля за отношением обучающихся к учебе, за уровнем их знаний, а следовательно, и как один из важных каналов для своевременного подтягивания отстающих обучающихся.

При подготовке специалиста важны не только серьезная теоретическая подготовка, знание

основ надежности подвижного состава, но и умение ориентироваться в разнообразных практических ситуациях, ежедневно возникающих в его деятельности. Этому способствует форма обучения в виде практических занятий. Задачи практических занятий: закрепление и углубление знаний, полученных на лекциях и приобретенных в процессе самостоятельной работы с учебной литературой, формирование у обучающихся умений и навыков работы с исходными данными, научной литературой и специальными документами. Практическому занятию должно предшествовать ознакомление с лекцией на соответствующую тему и литературой, указанной в плане этих занятий. Самостоятельная работа может быть успешной при определенных условиях, которые необходимо организовать. Ее правильная организация, включающая технологии отбора целей, содержания, конструирования заданий и организацию контроля, систематичность самостоятельных учебных занятий, целесообразное планирование рабочего времени позволяет привить студентам умения и навыки в овладении, изучении, усвоении и систематизации приобретаемых знаний в процессе обучения, привить навыки повышения профессионального уровня в течение всей трудовой деятельности.

Каждому студенту следует составлять еженедельный и семестровый планы работы, а также план на каждый рабочий день. С вечера всегда надо распределять работу на завтра. В конце каждого дня целесообразно подводить итог работы: тщательно проверить, все ли выполнено по намеченному плану, не было ли каких-либо отступлений, а если были, по какой причине это произошло. Нужно осуществлять самоконтроль, который является необходимым условием успешной учебы. Если что- то осталось невыполненным, необходимо изыскать время для завершения этой части работы, не уменьшая объема недельного плана.

Компетенции обучающегося, формируемые в результате освоения учебной дисциплины, рассмотрены через соответствующие знания, умения и владения. Для проверки уровня освоения дисциплины предлагаются вопросы к экзамену и тестовые материалы, где каждый вариант содержит задания, разработанные в рамках основных тем учебной дисциплины и включающие терминологические задания.

Фонд оценочных средств являются составной частью учебно-методического обеспечения процедуры оценки качества освоения образовательной программы и обеспечивает повышение качества образовательного процесса и входит, как приложение, в состав рабочей программы дисциплины.

Основные методические указания для обучающихся по дисциплине указаны в разделе основная и дополнительная литература.