# МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)



Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 23.05.06 Строительство железных дорог, мостов и

транспортных тоннелей, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

# РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

### Проектирование мостов в зонах повышенной сейсмичности

Специальность: 23.05.06 Строительство железных дорог,

мостов и транспортных тоннелей

Специализация: Мосты

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 941027

Подписал: заведующий кафедрой Пискунов Александр

Алексеевич

Дата: 03.03.2023

## 1. Общие сведения о дисциплине (модуле).

Целями изучения дисциплины являются получение теоретических знаний в области

мостостроения, освоение методов расчёта мостовых сооружений, проектируемых для

районов с повышенной сейсмической активностью.

## 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

**ПК-19** - Способен проводить прикладные исследования в сфере инженерно-технического проектирования; осуществлять проведение работ по обработке и анализу научно-технической информации и результатов исследований.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

#### Знать:

методы проектирования трассы, технико-экономического обоснования технических параметров новой железной дороги, размещения и выбора искусственных сооружений и других объектов инфраструктуры железнодорожной линии в соответствии с требованиями нормативных документов; состав и содержание комплексного проекта на разных стадиях проектирования, технологию различных видов работ, состав и содержание договорной документации на выполнение проектно-изыскательских работ.

#### Уметь:

выполнять трассирование новой железной дороги; проектировать план, продольный и поперечные профили новой железнодорожной линии; определять показатели стока поверхностных вод и подбирать типы и отверстия водопропускных сооружений; принимать проектные решения по выбору технических параметров железной дороги с использованием новых информационных технологий; выполнять обоснование и выбор рациональных решений в области изысканий и проектирования железных дорог.

#### Владеть:

навыками проектирования трассы и других постоянных устройств с учетом технологических процессов по строительству железной дорог;

методами обоснования принимаемых инженерно-технологических решений при проектировании и на изысканиях железных дорог; умением оценивать условия проектирования инфраструктуры новой железной дороги и определять соответствущие им нормативные требования.

- 3. Объем дисциплины (модуля).
- 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 2 з.е. (72 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

| Тин миобилу роматий                                       | Количество часов |            |
|-----------------------------------------------------------|------------------|------------|
| Тип учебных занятий                                       |                  | Семестр №8 |
| Контактная работа при проведении учебных занятий (всего): | 42               | 42         |
| В том числе:                                              |                  |            |
| Занятия лекционного типа                                  | 14               | 14         |
| Занятия семинарского типа                                 | 28               | 28         |

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 30 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
  - 4. Содержание дисциплины (модуля).
  - 4.1. Занятия лекционного типа.

| №         | T                                                                                         |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------|--|--|--|--|
| $\Pi/\Pi$ | Тематика лекционных занятий / краткое содержание                                          |  |  |  |  |
| 1         | Раздел 1 Анализ разрушений транспортных сооружений при землетрясениях.                    |  |  |  |  |
|           | Оценка сейсмического риска                                                                |  |  |  |  |
|           | Тема 1.1 Природа землетрясений. Основные термины и понятия. Классификация землетрясений.  |  |  |  |  |
|           | Шкалы интенсивностей землетрясений.                                                       |  |  |  |  |
|           | Тема 1.2 Типичные повреждения и разрушения сооружений при сейсмических воздействиях.      |  |  |  |  |
|           | Тема 1.3 Определение сейсмичности района и строительной площадки. Параметры и             |  |  |  |  |
|           | характеристики, определяющие исходное сейсмическое воздействие.                           |  |  |  |  |
|           | Тема 1.4 Типичные повреждения и разрушения сооружений при сейсмических воздействиях.      |  |  |  |  |
| 2         | Раздел 2 Простейшие динамические модели. Концепция спектров максимальных                  |  |  |  |  |
|           | реакций                                                                                   |  |  |  |  |
|           | Тема 2.1 Системы с одной степенью свободы. Математические модели. Основные свойства.      |  |  |  |  |
|           | Тема 2.2 Методы построения спектров. Спектры Фурье сейсмических воздействий.              |  |  |  |  |
|           | Тема 2.3 Спектры реакций Ньюмарка Холла. Спектры Ньюмарка Холла и спектры, используемые в |  |  |  |  |
|           | нормах различных стран.                                                                   |  |  |  |  |
|           | Тема 2.4 Плоские волны напряжений в упругих средах. Продольные волны. Поперечные волны.   |  |  |  |  |
|           | Поверхностные волны Рэлея и Лява.                                                         |  |  |  |  |
| 3         | Раздел 3 Расчёт подземных сооружений на сейсмические воздействия.                         |  |  |  |  |
|           | Тема 3.1 Особенности взаимодействия тоннельных обделок с грунтовым массивом при           |  |  |  |  |
|           | землетрясениях. Модели для расчёта тоннелей расположенных в жёстких грунтах               |  |  |  |  |
|           | Тема 3.2 Взаимодействие обделки с грунтовым массивом. Особенности расчёта. Математические |  |  |  |  |
|           | модели.                                                                                   |  |  |  |  |
|           | Тема 3.3 Метод конечных элементов.                                                        |  |  |  |  |
|           | Тема 3.4 Типы сейсмоизолирующих устройств. Математические модели. Примеры использования   |  |  |  |  |
|           | сейсмоизолирующих и демпфирующих устройств в тоннелестроении.                             |  |  |  |  |
|           | Тема 3.5 Оценка напряжённо деформированного состояния элементов обделки при воздействии   |  |  |  |  |
|           | продольных, поперечных и поверхностных волн.                                              |  |  |  |  |

# 4.2. Занятия семинарского типа.

# Практические занятия

| Тематика практических занятий/краткое содержание                                           |  |  |  |
|--------------------------------------------------------------------------------------------|--|--|--|
| Раздел 1                                                                                   |  |  |  |
| Методы построения спектров. Примеры использования. Спектры Ньюмарка Холла                  |  |  |  |
| Раздел 2                                                                                   |  |  |  |
| 1. Основные понятия и зависимости. Плоские волны напряжений в упругих средах. Продольные   |  |  |  |
| волны. Поперечные волны. Поверхностные волны Рэлея и Лява. Учёт влияния местных            |  |  |  |
| геологических условий. Учёт глубины заложения.                                             |  |  |  |
| 2. Модели для расчёта тоннелей расположенных в мягких грунтах.                             |  |  |  |
| 3. Оценка напряжённо деформированного состояния элементов обделки при воздействии          |  |  |  |
| продольных, поперечных и поверхностных волн                                                |  |  |  |
| Раздел 3                                                                                   |  |  |  |
| 1. Особенности расчёта тоннелей, пересекающих зоны разломов                                |  |  |  |
| 2. Метод конечных элементов. Определение параметров конечных элементов и парметров границ  |  |  |  |
| среды.                                                                                     |  |  |  |
| 3. Примеры использования сейсмоизолирующих и демпфирующих устройств в тоннелестроении      |  |  |  |
| 4. Учёт возможного разжижения основания и всплытия тоннелей. Расчёт конструкций тоннельных |  |  |  |
| обделок с шарнирными соединениями                                                          |  |  |  |
| 5. Основные положения. Расчётная сейсмичность. Выбор трассы. Требования к конструкциям.    |  |  |  |
|                                                                                            |  |  |  |

| <b>№</b><br>п/п | Тематика практических занятий/краткое содержание                                    |  |  |  |
|-----------------|-------------------------------------------------------------------------------------|--|--|--|
|                 | 6. Расчётная сейсмичность. Требования к конструкции обделок.                        |  |  |  |
|                 | 7. Обследование тоннелей после землетрясений. Восстановительные и ремонтные работы. |  |  |  |
|                 | Цель сейсмомерической службы. Аппаратура и методы обработки информации              |  |  |  |

## 4.3. Самостоятельная работа обучающихся.

| <b>№</b><br>п/п | Вид самостоятельной работы             |
|-----------------|----------------------------------------|
|                 | Работа с лекционным материалом.        |
| 2               | Работа с литературой.                  |
| 3               | Подготовка к лабораторным работам.     |
| 4               | Подготовка к промежуточной аттестации. |
| 5               | Подготовка к текущему контролю.        |

# 4.4. Примерный перечень тем видов работ

- 2. Примерный перечень тем курсовых проектов Темы курсовых проектов:
- 1. Проект участка новой скоростной железной дороги
- 2. Проект участка новой особогрузонапряженной железной дороги
- 3. Проект участка новой железной дороги I-II категории
- 4. Проект участка новой железной дороги III-IV категории
- 5. Проект участка новой железной дороги с вариантом использования кратной тяги
- 6. Проект участка новой железной дороги с вариантом использования уравновешенного уклона
- 7. Проект участка новой железной дороги в сложных топографических условиях
  - 8. Проект участка новой железной дороги с мостовым переходом».
- 9. Проект участка новой железной дороги с тоннельным пересечением высотного препятствия.
- 10. Проект участка новой железной дороги с тоннельным пересечением водного препятствия.
  - 1. Примерный перечень тем расчетно-графических работ

# 5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

| No॒       | Библиографическое описание                       | Место доступа                       |
|-----------|--------------------------------------------------|-------------------------------------|
| $\Pi/\Pi$ | виолиографическое описание                       | место доступа                       |
| 1         | Колебания в инженерном деле С.П. Тимошенко,      | НТБ (фб.)                           |
|           | Д.Х. Янг, У. Уивер; Пер. с англ. Л.Г.Корнейчука; |                                     |
|           | Под ред. Э.И.Григолюка Однотомное издание        |                                     |
|           | Машиностроение, 1985                             |                                     |
| 2         | Сейсмостойкость транспортных тоннелей И.Я.       | НТБ (фб.); НТБ (чз.1)               |
|           | Дорман Однотомное издание Транспорт, 1986        |                                     |
| 3         | Спектры максимальных реакций экипажей поездов    |                                     |
|           | на землетрясения. Екатерина Алексеевна           |                                     |
|           | Пестрякова, Е.Н. Курбацкий, Чонг Там Нгуен       |                                     |
|           | Статья из журнала 2019                           |                                     |
| 4         | СОСТОЯНИЕ НОРМ РФ ПО РАСЧЕТУ НА                  |                                     |
|           | СЕЙСМОСТОЙКОСТЬ ТРАНСПОРТНЫХ                     |                                     |
|           | СООРУЖЕНИЙ Е.Н. Курбацкий, Е.Ю. Титов, С.С.      |                                     |
|           | Харитонов Статья из журнала 2017                 |                                     |
| 5         | Сейсмостойкость мостов Г.С. Шестоперов           | НТБ (фб.); НТБ (чз.1)               |
|           | Однотомное издание Транспорт, 1984               |                                     |
| 6         | Свод правил. СП 35.13330.2011. Мосты и трубы.    | http://libgost.ru                   |
|           | Актуализ. редак. СНиП 2.05.03-84*. Однотомное    |                                     |
|           | издание Минрегионразвития, М., 2013              |                                     |
| 7         | Свод правил. СП 14.13330.2011. Строительство в   | http://libgost.ru                   |
|           | сейсмических районах. Однотомное издание         |                                     |
|           | Минрегионразвития. М., 2012                      |                                     |
| 8         | Свод правил. СП 122.13330.2012. Тоннели          | http://libgost.ru                   |
|           | железнодорожные и автодорожные. Актуализ.        |                                     |
|           | редакция. СНиП 32-04-97. Однотомное издание      |                                     |
|           | Минрегионразвития М., 2012                       |                                     |
| 9         | Положение о составе разделов проектной           | https://minstroyrf.gov.ru/docs/535/ |
|           | документации и требованиях к их содержанию.      |                                     |
|           | Утв. постан. Правительства РФ от 16.2.2008 г. №  |                                     |
|           | 87. Однотомное издание 2008                      |                                     |
| 10        | Сейсмоизоляция мостов Е.Н. Курбацкий, Е.Ю.       |                                     |
|           | Титов, Л.В. Баев Статья из журнала 2020          |                                     |

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. http://library.miit.ru/ электронно-библиотечная система Научнотехнической библиотеки МИИТ.

- 2. http://rzd.ru/ сайт ОАО «РЖД».
- 3. http://elibrary.ru/ научно-электронная библиотека.
- 4. Поисковые системы: Yandex, Google, Mail.
- 5. Журнал "МЕТРО"
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Офисный пакет приложений Microsoft Office.

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Для проведения лекционных занятий необходима аудитория с мультимедиа аппаратурой.

Для проведения лабораторных работ требуется аудитория, оснащенная мультимедиа аппаратурой и ПК с необходимым программным обеспечением и подключением к сети интернет.

Тяжелая лаборатория "Мосты и тоннели"

- 1. Рабочее место лаборанта СЛВп-М ЛАМО 1500/900в составе: Табурет вращающийся газ-лифт с опорой для
- ног, металл/кожзам; Стол лабораторный лдсп 1500х900 мм комплектация: полки,

блок розеток на 220В (3 шт.), люминесцентные светильники, тумба подкатная

- 2. Пылеулавливающие агрегат ПП-600/У, 600 м3/час. Эффект-ть очистки 92%. 580x803x1342 мм. 3/380 B, P=0.75 кВт.
- 3. Портальная сервогидравлическая испытательная система STX-2000 со стабилометром для полномасштабных испытаний и моделирования эксплуатационных условий материалов балластной призмы (щебня, армирующих элементов и пр.), диаметр образцов 1000 мм с нагрузкой 3000 кН с определением модуля упругости. Силовая рама: 5170х4780х2080 мм.
  - 4. Насосная станция 380В,
- 5. Автоматизированная сервогидравлическая система для испытаний горных пород в стабилометре, одноосных испытаний, испытаний в условиях независимого трехосного нагружения, испытаний при повышенных температурах, ультразвуковых исследований RTR-1500, нагрузка до 1500 кН. Силовая рама: 3040х1070х1330мм.

6. Универсальная электрогидравлическая испытательная система для одноосных испытаний скальных грунтов, строительных материалов и элементов конструкций UCT -4500,

нагрузка 4500 кH, рабочая зона (ВхШхГ) 500х500х1500 мм. Силовая рама: 4010х1580х1560мм

7. Сервогидравлическая универсальная испытательная система для линамических и

статических испытаний мерзлых и талых грунтов в условиях трехосного сжатия FSTX

- -100, давление (поровое и всестороннее) 20 МПа, осевая нагрузка 100 кH, температура от -30 °C до +100 °C, диаметр образцов до 75 мм. Силовая рама: 2790x980x960мм
- 8. Сервогидравлическая универсальная испытательная машина для статических и динамических испытаний асфальтобетонов АРТ
- -100 с нагрузкой до 100 кН при температурах от -15 °C до +80 °C. Силовая рама: 2540х1270х762м
- 9. Кран мостовой электрический однобалочный опорный. Грузоподъемность 3,2 тонны.
- 10. Таль электрическая канатная передвижная, г/п 3,2 т. Высота подъема 6 м. Скорость

подъема 8 м/мин. Скорость передвижения 20 м/мин. 1120х957х450 мм

9. Форма промежуточной аттестации:

Зачет в 8 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

профессор, доцент, д.н. кафедры

«Мосты и тоннели» Е.Н. Курбацкий

Согласовано:

Заведующий кафедрой МиТ А.А. Пискунов

Председатель учебно-методической

комиссии М.Ф. Гуськова