МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 38.04.02 Менеджмент, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Проектирование транспортно-логистических комплексов

Направление подготовки: 38.04.02 Менеджмент

Направленность (профиль): Логистический менеджмент в цепях поставок

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 26204

Подписал: И.о. заведующего кафедрой Багинова Вера

Владимировна

Дата: 14.11.2025

1. Общие сведения о дисциплине (модуле).

Освоение учебного курса «Проектирование транспортно-логистических комплексов» способствует формированию у студентов широкой методической базы моделирования и проектирования работы объектов транспортно-логистической комплексов, позволяющей участвовать в проведении исследовательских проектов и применять их на практике.

Целью изучения учебной дисциплины «Проектирование транспортнологистических комплексов» является:

- получение студентами расширенных знаний в сфере имитационного и математического моделирования работы объектов транспортнологистической инфраструктуры.

Основные задачи учебной дисциплины:

- изучить современные подходы имитационного моделирования;
- сформировать расширенную компетенцию в области дискретнособытийного моделирования;
- сформировать расширенную компетенцию в области агентного моделирования;
- сформировать расширенную компетенцию в области системной динамики.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ПК-3** Способен выполнять проектирование логистических, транспортных и производственных процессов на объектах транспортнологистической инфраструктуры;
- УК-2 Способен управлять проектом на всех этапах его жизненного цикла.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- виды и классификацию транспортно-логистических комплексов, их функциональную структуру;
- основы имитационного и математического моделирования транспортно логистических комплексов.

Уметь:

- проводить анализ существующей транспортно-логистической инфраструктуры и выявлять узкие места;
- разрабатывать имитационные и математические модели транспортно логистических комплексов.

Владеть:

- методиками оценки устойчивости и надёжности транспортнологистических комплексов;
- навыками разработки имитационных математических моделей транспортно логистических комплексов.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 5 з.е. (180 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Tura una ferra un acarament	Количество часов	
Тип учебных занятий		Семестр №3
Контактная работа при проведении учебных занятий (всего):	48	48
В том числе:		
Занятия лекционного типа	16	16
Занятия семинарского типа	32	32

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 132 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No					
п/п	Тематика лекционных занятий / краткое содержание				
1	Моделирование, как инструмент изучения и проектирования транспортно -				
	логистических комплексов. Теория массового обслуживания.				
	Рассматриваемые вопросы:				
	- понятие модели;				
	- имитационная модель;				
	- математическая модель;				
	- виды моделирования и сферы их эффективного использования;				
	- понятие системы массового обслуживания;				
	- классификация СМО;				
	- сферы эффективного использования ТМО; - использование программного обеспечения для				
	решения задач СМО.				
2	Одноканальные СМО. Многоканальные СМО.				
	Рассматриваемые вопросы:				
	- одноканальные СМО без очередей;				
	- одноканальные СМО с ограничением на длину очереди;				
	- одноканальные СМО без ограничения на длину очереди;				
	- особенности практического использования СМО и корректной интерпретации полученных				
	результатов;				
- многоканальные СМО без очередей; - многоканальные СМО с ограничением на длину очереди;					
	- многоканальные СМО с ограничением на длину очереди;				
	- особенности практического использования СМО и корректной интерпретации полученных				
	результатов.				
3	Имитационное моделирование. Дискретно-событийный подход ИМ.				
	Рассматриваемые вопросы:				
	- понятие имитационной модели:				
	- классификация подходов имитационного моделирования и краткое изложение их сути;				
	- краткий обзор сред имитационного моделирования, их преимуществ и недостатков;				
	- суть дискретно-событийного подхода ИМ;				
	- сферы эффективного использования;				
	- примеры дискретно-событийных моделей транспортно-логистических комплексов.				
4	Агентное моделирование. Системная динамика.				
	Рассматриваемые вопросы:				
	- понятие Агента;				
	- суть агентного моделирования;				
	- сферы эффективного использования.				
	- примеры агентных моделей транспортно-логистических комплексов;				
	- понятие уровней, потоков, накопителей, функций;				
	- суть системной динамики; - примеры системно-динамических моделей в транспорте и логистике.				
5					
)	Среда имитационного моделирования AnyLogic. Основы Java для Anylogic.				
	Рассматриваемые вопросы:				
	- интерфейс среды разработки моделей; - архитектура модели,				
	- архитектура модели, - библиотеки моделирования;				
	onomo teni mogompobumi,				

$N_{\underline{0}}$	T			
п/п	Тематика лекционных занятий / краткое содержание			
	- свойства, консоль, палитра;			
	- создание модели;			
	- понятие объекто-ориентированного програмирования;			
	- понятие класса, метода, функции, коллекции, массива и тд.			
6	Основы Java для Anylogic. Пешеходная библиотека Anylogic.			
	Рассматриваемые вопросы:			
	- циклы for и while;			
	- переменные, функции, параметры;			
	- типы данных: int, double, bool-ean, String и тд;			
	- ветвление программы;			
	- элементы разметки пространства, агенты и логические блоки пешеходной библиотек;			
	- примеры практического использования пешеходной библиотеки AnyLogic;			
	- тепловая карта потока.			
7	Автодорожная библиотека AnyLogic. Железнодорожна библиотека AnyLogic.			
	Рассматриваемые вопросы:			
	- элементы разметки пространства, агенты и логические блоки автодорожной библиотеки;			
	- примеры практического использования автодорожной библиотеки AnyLogic;			
	- элементы разметки пространства, агенты и логические блоки железнодорожной библиотеки;			
	- примеры практического использования автодорожной библиотеки AnyLogic.			
8	Визуализация модели. Разработка интерфейса и элементов управления моделью.			
	Рассматриваемые вопросы:			
	- элементы интерфейса;			
	- подходы к управлению моделью.			

4.2. Занятия семинарского типа.

Практические занятия

№	T			
п/п	Тематика практических занятий/краткое содержание			
1	Решение задач. Одноканальные СМО без очередей. Одноканальные СМО с			
	ограничением на длину очереди.			
	В результате работы на практическом занятии студенты получат навыки анализа одноканальных			
	СМО без очереди, а также навыки анализа СМО с ограничением на длину очереди.			
2	Решение задач. Одноканальные СМО без ограничения на длину очереди.			
	Многоканальные СМО без очередей.			
	В результате работы на практическом занятии студенты получат навыки анализа одноканальных			
	СМО без ограничения на длину очереди, а также навыки анализа многоканальных СМО без			
	очереди.			
3	Решение задач. Многоканальные СМО с ограничением на длину очереди.			
	Многоканальные СМО без ограничения на длину очереди.			
	В результате работы на практическом занятии студенты получат навыки анализа многоканальных			
	СМО с ограничением на длину очереди, а также навыки анализа многоканальных СМО без			
	ограничения на длину очереди.			
4	Проектирование имитационной модели инструментами пешеходной библиотеки			
	AnyLogic. Нанесение элементов разметки пространства. Функциональные блоки			
	пешеходной библиотеки.			
	В результате работы на практическом занятии студенты получат навыки нанесения элементов			

№	Тематика практических занятий/краткое содержание			
Π/Π				
	разметки пространства в среде имитационного моделирования AnyLogic, а также навыки работы с элементами пешеходной библиотеки в среде имитационного моделирования AnyLogic.			
5	Проектирование имитационной модели инструментами пешеходной библиотеки			
	AnyLogic. Добавление элементов управления и инфографики. 3D визуализация			
	модели			
	В результате работы на практическом занятии студенты получат навыки добавления элементов управления и инфографик в среде имитационного моделирования AnyLogic, а также навыки 3D визуализация модели в среде имитационного моделирования AnyLogic.			
6	Проектирование имитационной модели автодорожного перекрестка			
	инструментами дорожной библиотеки AnyLogic. Нанесение элементов разметки			
	пространства. Функциональные блоки автодорожной библиотеки.			
	В результате работы на практическом занятии студенты получат навыки нанесения элементов			
	разметки дорожного пространства в среде имитационного моделирования AnyLogic, а также навыки			
	работы с элементами дорожной библиотеки в среде имитационного моделирования AnyLogic.			
7	Проектирование имитационной модели автодорожного перекрестка			
	инструментами дорожной библиотеки AnyLogic. Добавление элементов			
	управления и инфографики. Временной график. Добавление элементов управления			
	и инфографики. Оптимизационный эксперимент.			
	В результате работы на практическом занятии студенты получат навыки добавления элементов			
	управления и инфографик в среде имитационного моделирования AnyLogic, а также навыки			
	проведения оптимизационного эксперимента в среде имитационного моделирования AnyLogic.			
8	Проектирование имитационной модели автодорожного перекрестка			
	инструментами дорожной библиотеки AnyLogic. 3D визуализация.			
	В результате работы на практическом занятии студенты получат навыки 3D визуализации			
	совмещенной работы пешеходной и автодожной библиотеки AnyLogic.			

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы		
	Работа с лекционными материалами.		
2	Самостоятельной изучение тем дисциплины по согласованию с преподавателем.		
3	Выполнение курсового проекта.		
4	Подготовка к промежуточной аттестации.		
5	Подготовка к текущему контролю.		

4.4. Примерный перечень тем курсовых проектов

курсовых проектов рамках студентами будут решены индивидуальные задачи проектирования пешеходных и автодорожных процессов. В качестве изучаемого объекта, будут использованы реальные объекты транспортно-логистической инфраструктуры. Для написания следующего проекта курсового предлагается вбрыть ИЗ списка инфратсруктурных объектов:

- 1. Пересечение Ленинградского проспекта и улицы Генерала Дорохова.
- 2. Пересечение Кутузовского проспекта и Можайского шоссе.
- 3. Перекрёсток проспекта Мира и улицы Сухонская / Олимпийского проспекта.
- 4. Пересечение Волгоградского проспекта и улицы Текстильщики / Люблинской улицы.
 - 5. Перекрёсток Дмитровского шоссе и Алтуфьевского шоссе.
 - 6. Пересечение Каширского шоссе и улицы Борисовские Пруды.
- 7. Перекрёсток Варшавского шоссе и улицы Нагатинская / Чонгарского бульвара.
- 8. Пересечение Ленинского проспекта и улицы Косыгина / проспекта Вернадского.
- 9. Перекрёсток Ярославского шоссе и улицы Бочкова / Осташковской улицы.
- 10. Пересечение МКАД и Алтуфьевского шоссе (внешняя и внутренняя стороны).
- 11. Пересечение МКАД и Ленинградского шоссе (внешняя и внутренняя стороны).
- 12. Перекрёсток Волоколамского шоссе и улицы Митинская / Путилковского шоссе.
- 13. Пересечение Новочеркасского бульвара и улицы Локомотивный проезд / Черкизовской улицы.
- 14. Перекрёсток Рязанского проспекта и улицы Люблинская / Текстильщики (южная часть).
 - 15. Пересечение Профсоюзной улицы и Нахимовского проспекта.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа
1	Горожанина, Е. И. Имитационное моделирование:	Лань: электронно-библиотечная
	учебник / Е. И. Горожанина, Е. А. Богданова. — 2-	система. — URL:
	е изд. [доп. и перераб.]. — Самара : ПГУТИ, 2023.	https://e.lanbook.com/book/411686
	— 300 c. — ISBN 978-5-907336-48-3.	
2	Климова, Е. В. Транспортно-логистические	Лань: электронно-библиотечная
	системы: учебное пособие / Е.В.Климова, С.Б.	система. — URL:
	Джахьяева. — Астрахань : АГТУ, 2023. — 84 с. —	https://e.lanbook.com/book/411941
	ISBN 978-5-89154-752-0.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
- 1. Информационный портал Научная электронная библиотека eLIBRARY.RU (www://elibrary.ru);
- 2. Единая коллекция цифровых образовательных ресурсов (http://window.edu.ru);
 - 3. Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru);
 - 4. Поисковые системы: Yandex, Mail.
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Microsoft Internet Explorer (или другой браузер);
 - 2. Операционная система Windows;
 - 3. Microsoft Office.
 - 4. Anylogic 8.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).
- 1. Учебные аудитории для проведения занятий лекционного типа, оснащённые компьютерной техникой и наборами деманстрационного оборудования.
- 2. Компьютерные классы, оборудованные пресональными компьютерами.
 - 9. Форма промежуточной аттестации:

Курсовой проект в 3 семестре.

Экзамен в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Логистика и управление транспортными системами»

Д.В. Кузьмин

Согласовано:

и.о. заведующего кафедрой ЛиУТС

В.В. Багинова

Председатель учебно-методической

комиссии Н.А. Андриянова