МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы специалитета по специальности 08.05.01 Строительство уникальных зданий и сооружений, утвержденной первым проректором РУТ (МИИТ)

Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Прочность, жесткость и устойчивость инженерных конструкций в гидротехническом строительстве

Специальность: 08.05.01 Строительство уникальных зданий и

сооружений

Специализация: Строительство гидротехнических сооружений

повышенной ответственности

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 1054812

Подписал: заведующий кафедрой Сахненко Маргарита

Александровна

Дата: 17.04.2022

1. Общие сведения о дисциплине (модуле).

Целью освоения учебной дисциплины Прочность, жесткость и устойчивость инженерных конструкций в гидротехническом строительстве осовение компетенций обучающимися в области расчетов инженерных конструкций гидротехнических сооружений и получения данных для их надежного и экономически эффективного проектирования.

Задачи которые ставяться при изучении и осовение дисциплины:

- 1. осовение методов для определения прочности. жесткости, устойчивости конструкций инженерных сооружений
- 2. получение навыков расчета инженерных сооружений в катеогориях: воздействие и сопротивление
- 3. преобретение основ расчета конструкций инженерных сооружений с применением компьютерных программных комплексов.
 - 2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-11** Способен осуществлять постановку и решение научнотехнических задач строительной отрасли, выполнять экспериментальные исследования и математическое моделирование, анализировать их результаты, осуществлять организацию выполнения научных исследований;
- **ПК-7** Способен проводить анализ объекта градостроительной деятельности с прогнозированием природно-техногенной опасности, внешних воздействий для оценки и управления рисками применительно к исследуемому объекту градостроительной деятельности.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Знать:

- -механические свойства материалов конструкций
- -классификацию сооружений и расчетных схем
- -основные разрешающие уравнения строительной механики
- -методику расчета инженерных конструкций и сооружений

Уметь:

- -применять методы расчетов строительной механики в гидротехническом проектировании
 - применять методы расчет ан прончость, жесткость и устойчивость для

расчета уникальных сооружений ГТС

- проводить анализ исходных данных и полученных результатов расчета
- -применять программные комплексы и профессионально определять исходные данные для расчетов с применением программ САПР.

Владеть:

- методами расчета проности, жетскости и устойчивости конструкций инженерных сооружений водного транспорта
 - -навыками работы в программных комплексах САПР для расчетов ГТС
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 7 з.е. (252 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий		Количество часов		
		Семестр		
		№6	№ 11	
Контактная работа при проведении учебных занятий (всего):		32	64	
В том числе:				
Занятия лекционного типа		16	16	
Занятия семинарского типа		16	48	

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 156 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных

условиях, при проведении промежуточной аттестации.

4. Содержание дисциплины (модуля).

4.1. Занятия лекционного типа.

No	Тематика лекционных занятий / краткое содержание				
п/п					
1	Общие положения. Растяжение и сжатие.				
	Рассматриваются вопросы:				
	Сопротивление материалов. Цели и задачи дисциплины. Понятие прочности, жесткости и				
	устойчивости. Основные гипотезы о свойствах материала. Общие представления о деформациях.				
	Касательное и нормальное напряжение.				
	Растяжение и сжатие. Напряжения и деформации при растяжении – сжатии. Закон Гука. Модуль				
	упругости первого рода, коэффициент Пуассона. Условия прочности.				
2	Геометрические характеристики плоских сечений. Сдвиг.				
	Рассматриваются вопросы:				
	Геометрические характеристики плоских сечений. Сдвиг. Геометрические характеристики плоских				
	сечений. Осевые и полярные моменты инерции. Моменты сопротивления.				
2	Чистый сдвиг. Закон Гука для сдвига. Модуль упругости второго рода.				
3	Кручение.				
	Рассматриваются вопросы:				
	Кручение прямого стержня. Построение эпюр крутящих моментов. Распределение касательных				
	напряжений по поперечному сечению. Определение деформаций. Условия прочности и жесткости при				
4	кручении.				
4	Напряженное и деформированное состояние в точке тела. Теории прочности.				
	Рассматриваются вопросы:				
	Виды напряженного состояния (одноосное, плоское, объемное состояние). Главные напряжения и				
	главные площадки. Индексация главных напряжений. Понятие о деформированном состоянии в точке тела. Обобщенный закон Гука. Понятие о теориях				
	прочности.				
5	Прямой поперечный изгиб.				
3	Рассматриваются вопросы:				
	Общие понятия о деформации изгиба. Чистый изгиб. Построение эпюр изгибающих моментов и				
	поперечных сил.				
	Определение нормальных напряжений при чистом изгибе. Условие прочности по нормальным				
	напряжениям.				
	Прямой поперечный изгиб. Определение касательных и нормальных напряжений при поперечном				
	изгибе, формула Журавского. Распределение нормальных и касательных напряжений на примере				
	двутаврового сечения. Рациональные формы сечения.				
	Определение перемещений при поперечном изгибе. Теоремы о взаимности работ и перемещений.				
	Интеграл Мора. Способ Верещагина.				
6	Расчет статически неопределимых систем методом сил. Сложное сопротивление.				
	Рассматриваются вопросы:				
	Расчет простейших статически неопределимых стержневых систем. Метод сил. Канонические				
	уравнения. Построение эпюр внутренних силовых факторов в плоских и пространственных				
	стержневых системах. Сложное сопротивление.				
7	Продольный и продольно-поперечный изгиб.				
	Рассматриваются вопросы:				
	Устойчивость сжатых стержней. Критическая сила. Формула Эйлера. Условия применимости				

Ŋ <u>o</u>					
п/п	Тематика лекционных занятий / краткое содержание				
11/11	формулы Эйлера. Практические методы расчета на устойчивость.				
	Понятие о продольно-поперечном изгибе.				
8	Расчеты на выносливость и динамические расчеты.				
O	Рассматриваются вопросы:				
	Усталость металлов. Предел выносливости. Диаграмма предельных амплитуд. Факторы, влияющие на				
	предел выносливости. Расчеты на прочность при напряжениях, циклически меняющихся во времени.				
	Коэффициенты запаса.				
Колебания упругих систем. Расчет элементов, движущихся с ускорением. Виды удара. Осн					
	допущения технической теории удара. Условия прочности при ударе.				
9	Расчет оболочек вращения				
	Рассматриваются вопросы:				
	Расчет оболочек вращения. Расчеты стержней по предельным нагрузкам. Расчет оболочек вращения				
	по безмоментной теории. Расчет элементов по предельным нагрузкам.				
10	Общие положения и методы нелинейной строительной механики Задачи нелинейной				
	строительной механики.				
	Рассматриваются вопросы:				
	Основные понятия и определения. Понятие физической и геометрической нелинейности в				
	строительной механике. Виды физической нелинейности. Понятие о конструктивной нелинейности.				
	Основные уравнения и гипотезы для нелинейно упругих и упругопластических тел. Простое и				
	сложное нагружение. Активная и пассивная деформация. Основные методы решения нелинейных				
	задач: метод упругих решений и метод переменных параметров упругости. Основные теоремы				
	строительной механики нелинейных стрежневых систем. О теориях деформирования				
11	Методы решения нелинейных задач теории упругости и теории пластичности				
	Рассматриваются вопросы:				
	Метод упругих решений, метод переменных параметров упругости, метод дополнительных				
	деформаций, метод Ньютона-Рафсона, метод Ньютона-Канторовича, метод последовательного				
	нагружения, метод конечных элементов для решения различных видов нелинейных задач, метод				
	решения квазистатических задач.				
12	Расчет нелинейных стрежневых систем.				
	Рассматриваются вопросы:				
	Физические и геометрические нелинейности Основы расчет нелинейно-упругих балок, приближенный				
	метод. Особенности расчета по деформированному состоянию. Расчет по деформированному				
	состоянию способом последовательных приближений. Расчет рам по деформированному состоянию последовательными приближениями. Продольно-поперечный изгиб. Типы конечных элементов для				
	учета физической и геометрической нелинейностей. Учет физической и геометрической нелинейности				
	при расчете стержневых систем методом конечных элементов.				
13	Теория предельного равновесия.				
13	Рассматриваются вопросы:				
	Расчет конструкций по несущей способности Понятие о предельном состоянии. Разрушающие				
	нагрузки. Гипотезы теории предельного равновесия. основные теоремы о разрушающих нагрузках:				
	статическая, динамическая, кинематическая и о единственности решения. Понятие пластического				
	шарнира. Пластический момент сопротивления. Растяжение и сжатие. Предельное равновесие				
	многопролетных неразрезных балок. Особенности расчета изгибаемых конструкций методом				
	предельного равновесия. Расчет рам и арок. Расчет ферм. Предельное равновесие изгибаемых пластин.				
	Понятие о приспособляемости конструкций.				
14	Расчет конструкций с учетом пластических деформаций				
	Рассматриваются вопросы:				
	Плоская задача для идеально-пластического материала. Постановка задачи теории пластичности.				
	Теория малых упруго-пластических деформаций . Теория пластического течения . Постулат Друкера.				
	Простые механизмы разрушения. Частичное и полное разрушение. Комбинация простых механизмов				

№ п/п	Тематика лекционных занятий / краткое содержание				
	разрушения. Расчет статически неопределимых рам способом комбинированных механизмов разрушения. Расчет плит. Механизм разрушения плит. Расчет статически определимых и				
	неопределимых ферм с учетом пластических свойств материалов.				
15	Расчет конструкций с учетом ползучести материалов Основы теории ползучести.				
	Рассматриваются вопросы:				
	Линейная теория наследственности. Постановка задачи линейной ползучести (вязкоупругости).				
	Принцип Вольтерра. Релаксация. Модели описания явления ползучести. Механические модели				
	деформируемого тела. Тело Кельвина. Ползучесть бетона. Изгиб упруговязкой балки.				
16	Метод конечных элементов в программных расчетных комплексах				
	Рассматриваются вопросы:				
	Метод конечных элементов в программных расчетных комплексах при расчетах проности, жесткости,				
	устойчивости конструкций инженерных сооружений. Работа с программным комплексом ЛИРА-				
	CAIIP, SCAD office, PLAXIS, Renga				

4.2. Занятия семинарского типа.

Лабораторные работы

№ п/п	Наименование лабораторных работ / краткое содержание					
1	Определение положения центра изгиба для балки незамкнутого профиля.					
	В результате выполнения лабораторной работы студент получает навык:					
	Определение положения центра изгиба для балки незамкнутого профиля. Установление опытным					
	путем явления закручивания поперечного сечения балки в случае, когда действующая сила лежит в					
	главной плоскости инерции сечения, не являющейся плоскостью симметрии					
2	Опытная проверка теоремы о взаимности работ и перемещений.					
	В результате выполнения лабораторной работы студент получает навык:					
	Опытная проверка теоремы о взаимности работ и перемещений. Построение балки с помощью теоремы о взаимности перемещений					
3	Расчет прочности и устойчивости железобетонной конструкции причала эстакадного					
	типа в САПР					
	В результате выполнения лабораторной работы студент получает навык:					
	Расчет прочности и устойчивости железобетонной конструкции причала эстакадного типа в САПР					
4	Расчет НДС с применением программы PLAXIS					
	В результате выполнения лабораторной работы студент получает навык:					
	Расчет НДС с применением программы PLAXIS гравитационного сооружения при взаимодействии с					
	грунтом.					

Практические занятия

№ п/п	Тематика практических занятий/краткое содержание					
1	Расчеты на прочность и жесткость при растяжении-сжатии					
	В результате работы на практическом занятии студент получает навык:					
	Расчеты на прочность и жесткость при растяжении-сжатии: Статически определимые задачи на					
	растяжение-сжатие. Определение продольных сил, нормальных напряжений. Определение					
	перемещений в стержнях. Статически неопределимые задачи на растяжение-сжатие. Температурные					
	деформации.					
2	Сдвиг					
	В результате работы на практическом занятии студент получает навык:					
	Расчет на прочность и жёсткость при кручении: Практические расчеты некоторых простейших					

No	
п/п	Тематика практических занятий/краткое содержание
	конструкций, работающих на сдвиг. Статически определимые и статически неопределимые задачи на кручение.
3	Исследование напряжённого и деформированного состояния в точке
	В результате работы на практическом занятии студент получает навык:
	Решения задач на тему: «Исследование напряжённого и деформированного состояния в точке":
	Плоское напряженное состояние. Главные напряжения. Главные площадки. Пространственное
	напряженное состояние.
4	Внецентренное растяжение-сжатие. Изгиб с кручением
	В результате работы на практическом занятии студент получает навык:
	Решения задач по темам «Внецентренное растяжение-сжатие. Изгиб с кручением». Статически
	неопределимые задачи при изгибе: Расчёт статически неопределимых рам
5	Расчеты на выносливость и динамические нагрузки
	В результате работы на практическом занятии студент получает навык:
	Расчеты на выносливость и динамические нагрузки:
	Расчеты на прочность при циклически изменяющихся напряжениях. Вынужденные колебания системы с одной степенью свободы. Колебания системы с несколькими степенями свободы. Расчеты на
	ударную нагрузку. Свободные колебания системы с одной степенью свободы.
6	Расчет оболочек вращения
U	В результате работы на практическом занятии студент получает навык:
	Расчета оболочек вращения: Расчет оболочек вращения по безмоментной теории.
7	Расчет балочного элемента с учетом геометрической и физической нелинейности
,	В результате работы на практическом занятии студент получает навык:
	Расчета балочного элемента с учетом геометрической и физической нелинейности. Пределение
	деформаций возникающих в железобетонной балке, плите перекрытия по заданной нагрузке
8	Расчет пространственной стержневой конструкции
	В результате работы на практическом занятии студент получает навык:
	Расчета пространственной стержневой конструкции с учетом геометрической и физической
	нелинейности. Выполнение модели пространственной конструкции и расчет параметров
	определяющих нелинейность системы элементов.
9	Изгиб квадратной в плане пластины с распределенной нагрузкой
	В результате работы на практическом занятии студент получает навык:
	Расчета Изгиба квадратной в плане пластины с распределенной нагрузкой. Определение параметров
	изгиба пластины под действием нагрузки прикладываемой с различной интенсивность. Анализ
	воздействия.
10	Многопараметрическое нагружение
	В результате работы на практическом занятии студент получает навык:
	Определение поведения конструкции при многопараметрическом нагружении в различных условиях.
11	Анализ результатов расчета.
11	Определить напряженно-деформированное состояние опорной плиты под катковой
	опорой.
	В результате работы на практическом занятии студент получает навык:
	Определить напряженно-деформированное состояние опорной плиты под катковой опорой.
10	Представлены исходные данные по нагрузкам в трех вариантах. Определяются НДС состояния опоры.
12	Расчет плоской стержневой системы в САПР
	В результате работы на практическом занятии студент получает навык:
	Построение алгоритма расчета в программном комплексе ЛИРА САПР. Алгоритм расчета упругих
	систем МКЭ. Число степеней свободы плоской стержневой системы

4.3. Самостоятельная работа обучающихся.

№ п/п	Вид самостоятельной работы
1	Работа с конспектом лекций, изучение литературы.
2	Выполнение курсовой работы
3	Подготовка к текущему контролю.
4	Подготовка к промежуточной аттестации (зачет).
5	Выполнение курсовой работы.
6	Подготовка к промежуточной аттестации.
7	Подготовка к текущему контролю.

4.4. Примерный перечень тем курсовых работ

- 1. Расчет статически неопределимой рамной конструкции. На примере причального сооружения
- 2. Расчет нелинейных стрежневых систем. На примере конструкций камеры судоходного шлюза
- 3. Определение предельного состояния системы при растяжении-сжатии. На примере конструкции причального сооружения
- 4. Расчет статически определимой системы на надежность. Определение экономической эффективности.
- 5. Построение расчетной модели ГТС и определение прочности и устойчивости конструкции при заданных нагружениях

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

№ п/п	Библиографическое описание	Место доступа	
1	Тухфатуллин, Б. А. Нелинейные задачи строительной механики. Методы оптимального проектирования конструкций : учебное пособие / Б.А. Тухфатуллин. — Москва : ИНФРА-М, 2021. — 106 с. — (Высшее образование: Специалитет). — DOI 10.12737/1201340 ISBN 978-5-16-016633-9.	- Текст: электронный URL: https://znanium.com/catalog/product/1201340 (дата обращения: 25.05.2022).	
2	Кондратенко, В. Е. Строительная механика : учебник / В. Е. Кондратенко, С. М. Горбатюк, В. В. Девятьярова Москва : Изд. Дом НИТУ «МИСиС», 2019 192 с ISBN 978-5-907226-27-2.	- Текст: электронный URL: https://znanium.com/catalog/product/1248049 (дата обращения: 25.05.2022).	
3	таров, Н. М. Сопротивление материалов в	- Текст : электронный URL:	

примерах и задачах : учебное пособие / Н.М. Атаров. — Москва : ИНФРА-М, 2022.	https://znanium.com/catalog/product/1914090 (дата обращения: 25.05.2022).
— 407 с. — (Высшее образование:	
Бакалавриат) ISBN 978-5-16-003871-1.	

- 6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).
 - 1.Базы данных, информационно-поисковые системы Google, Yandex
 - 2. Научно-техническая библиотека РУТ (МИИТ) (http://library.miit.ru)
 - 3. Научная электронная библиотека eLIBRARY.RU (www.elibrary.ru)
 - 4. Электронная библиотека Znanium.com (http://znanium.com)
 - 5. Справочно-правовая система КонсультантПлюс (www.consultant.ru).
- 7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).
 - 1. Операционная система Microsoft Windows
 - 2. Офисный пакет приложений MS Office (Word, Excel, PowerPoint)
 - 3. Система автоматизированного проектирования Autocad
- 4. При проведении занятий с применением электронного обучения и дистанционных образовательных технологий, могут применяться следующие средства коммуникаций: ЭИОС РУТ(МИИТ), Microsoft Teams, электронная почта, скайп, WhatsApp и т.п.
- 8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории оснащенные компьютерным и демонстрационным оборудованием

9. Форма промежуточной аттестации:

Курсовая работа в 6 семестре. Зачет в 6, 11 семестрах.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

доцент, доцент, к.н. кафедры «Водные пути, порты и портовое оборудование» Академии водного транспорта

М.А. Сахненко

Согласовано:

Заведующий кафедрой ВППиГС

М.А. Сахненко

Председатель учебно-методической

комиссии А.Б. Володин