МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА» (РУТ (МИИТ)

Рабочая программа дисциплины (модуля), как компонент образовательной программы высшего образования - программы магистратуры по направлению подготовки 09.04.01 Информатика и вычислительная техника, утвержденной первым проректором РУТ (МИИТ) Тимониным В.С.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Развертывание и поддержка моделей искусственного интеллекта

Направление подготовки: 09.04.01 Информатика и вычислительная

техника

Направленность (профиль): Искусственный интеллект и предиктивная

аналитика в транспортных системах

Форма обучения: Очная

Рабочая программа дисциплины (модуля) в виде электронного документа выгружена из единой корпоративной информационной системы управления университетом и соответствует оригиналу

Простая электронная подпись, выданная РУТ (МИИТ)

ID подписи: 5665

Подписал: заведующий кафедрой Нутович Вероника

Евгеньевна

Дата: 01.09.2025

1. Общие сведения о дисциплине (модуле).

Целью освоения данной дисциплины является получение базовых, теоретических знаний и навыков в области организации процесса непрерывной интеграции и развертывания моделей интеллектуальных систем.

Задачи дисциплины:

- формирование у обучающихся базовых представлений и знаний о жизненном цикле проектирования, реализации, валидации, развертывании и мониторинга моделей искусственного интеллекта, основаном на лучших практиках автоматизации процессов в соответствии с методологией MLOps;
- формирование у обучающихся навыков работы с инструментами контроля версий кода, данных и моделей, организации автоматизированных процессов управления экспериментами, интеграцией, валидацией, развертывания и мониторингом моделей искусственного интеллекта.

2. Планируемые результаты обучения по дисциплине (модулю).

Перечень формируемых результатов освоения образовательной программы (компетенций) в результате обучения по дисциплине (модулю):

- **ОПК-5** Способен разрабатывать и модернизировать программное и аппаратное обеспечение информационных и автоматизированных систем;
- **ОПК-6** Способен разрабатывать компоненты программно-аппаратных комплексов обработки информации и автоматизированного проектирования;
- **ПК-3** Способен спроектировать, разработать, обучить, оценить и развернуть модели искусственного интеллекта в соответствии с методологией MLOps.

Обучение по дисциплине (модулю) предполагает, что по его результатам обучающийся будет:

Уметь:

- использовать системы контроля версий для версионирования кода обучения моделей, данных и признаков, конфигурации виртуальных сред;
- использовать Apache Airflow для организации воспроизводимого конвейера машинного обучения;
- использовать инструменты Prometheus и Grafana для организации мониторинга работы моделей искусственного интеллекта.
- проектировать и реализовывать компоненты интеграции моделей искусственного интеллекта используя современные архитектуры;

- использовать Docker и K8s для развертывания компонентов интеллектуальных систем.

Знать:

- особенности постановки бизнес-целей разработки МL-решений;
- этапы жизненного цикла разработки МL-решений;
- основные концепции методологии MLOps;
- основы принципы работы систем контроля версий для артефактов моделирования искусственного интеллекта;
 - принципы и подходы к управлению экспериментами;
 - методы и стратегии валидации моделей искусственного интеллекта;
 - особенности подходов к обработке;
 - подходом и методов поиска отклонений и сдвигов в данных.

Владеть:

- работы с инструментами автоматизации настройки виртуальных сред развертывания и выполнения моделей искусственного интеллекта;
- навыком организации процессов автоматического сбора и подготовки данных для обучения в AirFlow;
- навыком организации процессов разработки моделей с использованием MLFlow;
- навык организации конвейнеров для автоматического анализа модели и подбора порогов;
- навык организации процессов развертывания и обновления моделей искусственного интеллекта.
 - 3. Объем дисциплины (модуля).
 - 3.1. Общая трудоемкость дисциплины (модуля).

Общая трудоемкость дисциплины (модуля) составляет 4 з.е. (144 академических часа(ов).

3.2. Объем дисциплины (модуля) в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении учебных занятий:

Тип учебных занятий	Количество часов	
	Всего	Семестр №3
Контактная работа при проведении учебных занятий (всего):	32	32
В том числе:		
Занятия лекционного типа	16	16

- 3.3. Объем дисциплины (модуля) в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации составляет 112 академических часа (ов).
- 3.4. При обучении по индивидуальному учебному плану, в том числе при ускоренном обучении, объем дисциплины (модуля) может быть реализован полностью в форме самостоятельной работы обучающихся, а также в форме контактной работы обучающихся с педагогическими работниками и (или) лицами, привлекаемыми к реализации образовательной программы на иных условиях, при проведении промежуточной аттестации.
 - 4. Содержание дисциплины (модуля).
 - 4.1. Занятия лекционного типа.

№	Томотимо номиноми и роматий / кротисо со норукоми	
Π/Π	Тематика лекционных занятий / краткое содержание	
1	Введение в воспроизводимые и масштабируемые процессы машинного обучения	
	(ML).	
	Рассматриваемые вопросы:	
	- введение в организацию сред разработки для машинного обучения;	
	- воспроизводимость и мастабируемость исследований;	
	- виртуальные окружения, виды и особенности;	
	- бизнес-метрики, цели и приоритеты;	
	- типовой ML проект, типовые ошибки.	
2	Жизненный цикл разработки МL-решения.	
	Рассматриваемые вопросы:	
	- введение в понятие MLOps, архитектура MLOps;	
	- анализ требований, формирование целей;	
	- сбор и подготовка данных;	
	- машинное обучение и разработка моделей ИИ;	
	- развертывание в различных виртуальных средах;	
	- мониторинг;	
	- обзор инструментов MLOps, облачные платформы.	
3	Хранение и контроль версий.	
	Рассматриваемые вопросы:	
	- введение в проблематику хранения и версионирования кода и моделей ИИ;	
	- версионирование данных, обзор Data Version Control;	
	- трекинг данных, восстановление данных, обеспечение воспроизводимости и масштабируемости с	
	помощью конвейеров данных;	
	- параметры, графики и метрики в DVC;	
	- работа с FeatureStore;	

$N_{\underline{0}}$			
Π/Π	Тематика лекционных занятий / краткое содержание		
	- обзор Github, Gitlab, Gitea для версионирования кода;		
	- подход «Инфраструктура как код».		
4	Подходы к работе с данными на каждом этапе разработки ML-решений.		
	Рассматриваемые вопросы:		
	- введение в работу с данными в виде таблиц, текста, картинок, аудио и видео, особенности		
	разметки;		
	- обзор особенностей работы с Pandas, SQL и NoSQL, Apache Spark, Hive в автоматизированных		
	процессах;		
	- обзор инструментов для планирования и выполнения задач по обработке данных;		
	- организация процессов сбора и подготовки данных для обучения в AirFlow.		
5	Управление экспериментами.		
	Рассматриваемые вопросы:		
	- введение в понятие эксперимента, подходы к управлению экспериментами;		
	- технологии и инструменты для управления экспериментами;		
	- управления экспериментами в MLFlow;		
	- организация процессов разработки моделей с использованием MLFlow;		
	- упаковка моделей;		
	- организация репозиториев и реестров моделей ИИ.		
6	Валидация моделей ИИ. Интеграция моделей ИИ.		
	Рассматриваемые вопросы:		
	- введение в стратегии валидации моделей;		
	- обучающая, тестовая и валидационные выборки;		
	- кросс-валидации, временная кросс-валидация;		
	- анализ моделей ИИ, анализ метрик и выбор порогов, анализ производительности, анализ ошибок;		
	 - организация конвейнеров для автоматического анализа модели и подбора порогов; - введение в распространенные модели интерграции моделей ИИ; 		
	- введение в распространенные модели интерграции моделеи ит, - архитектурные особености современных систем, распределенные системы;		
	- монолиты, модулиты, сервисы и микросервисы;		
	- платформы, языки программирования и фреймворки;		
	- особенности интеграции на облачных платформах;		
	- модели пакетной обработки и обработки в реальном времени и их особенности интеграции;		
	- связь жизненного цикла разработки моделей ИИ с жизненным циклом разработки ПО;		
	- автоматизация интеграции моделей ИИ в рамках MLOps, обзор инструментов и практик.		
7	Развертывание моделей ИИ.		
	Рассматриваемые вопросы:		
	- особенности современных технологий развертывания, технологии, DevOps и MLOps практики;		
	- обзор технологий контейнеризации, Docker, K8s;		
	- особенности развертывания интеллектуальных систем пакетной обработки, AirFlow;		
	- особенности развертывания интеллектуальных систем обработки в реальном времени, Kafka;		
	- обновление моделей ИИ.		
8	Мониторинг.		
	Рассматриваемые вопросы:		
	- введение в сбор и визуализация метрик;		
	- инструменты сбора и визуализации метрик Prometheus и Grafana;		
	- анализ работы моделей, поиск отклонений и сдвигов в данных;		
	- оповещения, процессы обработки оповещений.		

4.2. Занятия семинарского типа.

Практические занятия

No	Тематика практических занятий/краткое содержание		
Π/Π			
1	Постановка задачи и бизнес-цели.		
	В результате выполнения практической работы студент знакомится с постановкой целей разработки		
	ML-решений, установкой приоритетов и формированием бизнес-целей.		
2	Версионирование кода. Версионирование данных.		
	В результате выполнения практической работы студент получает навык работы с инструментами		
	версионирования кода – Gitlab и Gitea, а также навык версионирования данных и признаков с		
	помощью инструментов Data Version Control и FeatureStore.		
3	Инфраструктура как код. Работа с данными.		
	В результате выполнения практической работы студент получает навык работы с инструментами		
	автоматизации настройки виртуальных сред развертывания и выполнения моделей ИИ, а также		
	навык организации процессов сбора и подготовки данных для обучения в AirFlow.		
4	1		
	В результате выполнения практической работы студент получает навык организации процессов		
	разработки моделей с использованием MLFlow.		
5	Управление валидацией.		
	В результате выполнения практической работы студент получает навык организации конвейнеров для автоматического анализа модели и подбора порогов.		
6	Управление интеграцией.		
	В результате выполнения практической работы студент получает навык организации процессов интеграции моделей ИИ.		
7	Управление развертыванием.		
	В результате выполнения практической работы студент получает навык организации процессов		
	развертывания и обновления моделей ИИ.		
8	Мониторинг.		
	В результате выполнения практической работы студент получает навык сбора и визуализации		
	метрик с помощью Prometheus и Grafana.		

4.3. Самостоятельная работа обучающихся.

$N_{\underline{0}}$	Вид самостоятельной работы	
Π/Π		
1	Изучение рекомендованной литературы.	
2	Подготовка к практическим занятиям.	
3	Выполнение курсовой работы.	
4	Подготовка к промежуточной аттестации.	
5	Подготовка к текущему контролю.	

4.4. Примерный перечень тем курсовых работ

- 1. Организация процессов версионирования кода обучения моделей ИИ на платформе Gitlab.
- 2. Организация процессов версионирования инфраструкторного кода и конфигураций на платформе Gitea.
- 3. Организация процессов версионирования данных с использованием Data Version Control.

- 4. Организация процессов версионирования признаков с использованием FeatureStore.
- 5. Организация процессов сбора и подготовки данных для пакетной обработки с использованием AirFlow.
- 6. Организация процессов сбора и подготовки данных для обработки данных в реальном времени с использованием Kafka и Spark Stream.
 - 7. Обзор свободно-распространяемых MLOps решений.
- 8. Особенности автоматизации процессов для пакетной обработки в рамках управления экспериментами в MLFlow.
- 9. Особенности автоматизации процессов для обработки данных в реальном времени в рамках управления экспериментами в MLFlow.
 - 10. Docker для процессов моделирования ИИ.
 - 11. Визуализация и анализ метрик моделей ИИ.

5. Перечень изданий, которые рекомендуется использовать при освоении дисциплины (модуля).

	енин диединины (медули).		
No	Библиографическое описание	Место доступа	
п/п	1 1	listore goodyna	
1	Хапке, Х. Разработка конвейеров машинного	https://e.lanbook.com/book/241088	
	обучения: руководство / Х. Хапке, К. Нельсон;	(дата обращения: 11.04.2025)	
	перевод с английского Н. Б. Желновой. —		
	Москва : ДМК Пресс, 2021. — 346 с. — ISBN		
	978-5-97060-886-9. — Текст : электронный		
2	Баймуратов, И. Р. Методы автоматизации	https://books.ifmo.ru/file/pdf/2625.pdf	
	машинного обучения : учебное пособие / И. Р.	(дата обращения: 11.04.2025)	
	Баймуратов. — Санкт-Петербург : НИУ ИТМО,		
	2020. — 40 с. — Текст : электронный		
3	Харенслак, Б. Apache Airflow и конвейеры	https://e.lanbook.com/book/241133	
	обработки данных / Б. Харенслак, Р. Д. де;	(дата обращения: 11.04.2025)	
	перевод с английского Д. А. Беликова. —		
	Москва : ДМК Пресс, 2022. — 502 с. — ISBN		
	978-5-97060-970-5. — Текст : электронный		
4	Сейерс, Э. X. Docker на практике / Э. X. Сейерс,	https://e.lanbook.com/book/131719	
	А. Милл; перевод с английского Д. А. Беликов.	(дата обращения: 11.04.2025)	
	— Москва : ДМК Пресс, 2020. — 516 с. —		
	ISBN 978-5-97060-772-5. — Текст:		
	электронный		
5	Кочер, П. С. Микросервисы и контейнеры	https://e.lanbook.com/book/123710	
	Docker : руководство / П. С. Кочер ; перевод с	(дата обращения: 11.04.2025)	
	английского А. Н. Киселева. — Москва : ДМК		

	Пресс, 2019. — 240 с. — ISBN 978-5-97060-739-	
	8. — Текст : электронный	
6	Пселтис, Э. Д. Потоковая обработка данных.	https://e.lanbook.com/book/105840
	Конвейер реального времени / Э. Д. Пселтис;	(дата обращения: 11.04.2025)
	перевод с английского А. А. Слинкин. —	
	Москва : ДМК Пресс, 2018. — 218 с. — ISBN	
	978-5-97060-606-3. — Текст : электронный	

6. Перечень современных профессиональных баз данных и информационных справочных систем, которые могут использоваться при освоении дисциплины (модуля).

Электронно-библиотечная система Научно-технической библиотеки РУТ(МИИТ) (http://library.miit.ru/)

Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com/)

Электронно-библиотечная система ibooks.ru (http://ibooks.ru/)

Открытые лекции (https://sphere.vk.company/materials/video/#19)

Открытые лекции (https://ods.ai/tracks/ml-in-production-spring-22)

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для освоения дисциплины (модуля).

Браузер Microsoft Internet Explorer или его аналоги

Пакет офисных программ Microsoft Office или его аналоги

Python 3.6 и выше

Anaconda

Data Version Control

FeatureStore

Apache Airflow

MLflow

GitLab

Prometheus

Grafana

8. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю).

Учебные аудитории для проведения учебных занятий, оснащенные компьютерной техникой и наборами демонстрационного оборудования.

Для практических занятий — наличие персональных компьютеров вычислительного класса.

9. Форма промежуточной аттестации:

Зачет в 3 семестре.

Курсовая работа в 3 семестре.

10. Оценочные материалы.

Оценочные материалы, применяемые при проведении промежуточной аттестации, разрабатываются в соответствии с локальным нормативным актом РУТ (МИИТ).

Авторы:

заведующий кафедрой, доцент, к.н. кафедры «Цифровые технологии управления транспортными процессами»

старший преподаватель кафедры «Цифровые технологии управления транспортными процессами»

Согласовано:

Заведующий кафедрой ЦТУТП В.Е. Нутович

Председатель учебно-методической комиссии

Н.А. Андриянова

В.Е. Нутович

Е.А. Заманов